Use facenet model

This commit is contained in:
Nicolas Mowen 2024-10-22 15:05:06 -06:00
parent 7c3f842fb9
commit 3a5e100fab
6 changed files with 23 additions and 49 deletions

View File

@ -34,7 +34,6 @@ ws4py == 0.5.*
unidecode == 1.3.*
# OpenVino & ONNX
openvino == 2024.3.*
onnx == 1.17.*
onnxruntime-openvino == 1.19.* ; platform_machine == 'x86_64'
onnxruntime == 1.19.* ; platform_machine == 'aarch64'
# Embeddings

View File

@ -10,7 +10,7 @@ __all__ = ["FaceRecognitionConfig", "SemanticSearchConfig"]
class FaceRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable face recognition.")
threshold: float = Field(
default=0.8, title="Face similarity score required to be considered a match."
default=0.9, title="Face similarity score required to be considered a match."
)
min_area: int = Field(
default=500, title="Min area of face box to consider running face recognition."

View File

@ -63,6 +63,6 @@ class SqliteVecQueueDatabase(SqliteQueueDatabase):
self.execute_sql("""
CREATE VIRTUAL TABLE IF NOT EXISTS vec_faces USING vec0(
id TEXT PRIMARY KEY,
face_embedding FLOAT[512] distance_metric=cosine
face_embedding FLOAT[128] distance_metric=cosine
);
""")

View File

@ -128,10 +128,10 @@ class Embeddings:
if self.config.face_recognition.enabled:
self.face_embedding = GenericONNXEmbedding(
model_name="resnet100/arcface",
model_file="arcfaceresnet100-8.onnx",
model_name="facenet",
model_file="facenet.onnx",
download_urls={
"arcfaceresnet100-8.onnx": "https://media.githubusercontent.com/media/onnx/models/bb0d4cf3d4e2a5f7376c13a08d337e86296edbe8/vision/body_analysis/arcface/model/arcfaceresnet100-8.onnx"
"facenet.onnx": "https://github.com/NicolasSM-001/faceNet.onnx-/raw/refs/heads/main/faceNet.onnx"
},
model_size="large",
model_type=ModelTypeEnum.face,

View File

@ -19,7 +19,7 @@ from frigate.comms.inter_process import InterProcessRequestor
from frigate.const import MODEL_CACHE_DIR, UPDATE_MODEL_STATE
from frigate.types import ModelStatusTypesEnum
from frigate.util.downloader import ModelDownloader
from frigate.util.model import ONNXModelRunner, fix_spatial_mode
from frigate.util.model import ONNXModelRunner
warnings.filterwarnings(
"ignore",
@ -31,6 +31,8 @@ warnings.filterwarnings(
disable_progress_bar()
logger = logging.getLogger(__name__)
FACE_EMBEDDING_SIZE = 160
class ModelTypeEnum(str, Enum):
face = "face"
@ -93,12 +95,9 @@ class GenericONNXEmbedding:
def _download_model(self, path: str):
try:
file_name = os.path.basename(path)
download_path = None
if file_name in self.download_urls:
download_path = ModelDownloader.download_from_url(
self.download_urls[file_name], path
)
ModelDownloader.download_from_url(self.download_urls[file_name], path)
elif (
file_name == self.tokenizer_file
and self.model_type == ModelTypeEnum.text
@ -114,14 +113,6 @@ class GenericONNXEmbedding:
)
tokenizer.save_pretrained(path)
# the onnx model has incorrect spatial mode
# set by default, update then save model.
print(
f"download path is {download_path} and model type is {self.model_type}"
)
if download_path is not None and self.model_type == ModelTypeEnum.face:
fix_spatial_mode(download_path)
self.downloader.requestor.send_data(
UPDATE_MODEL_STATE,
{
@ -196,30 +187,33 @@ class GenericONNXEmbedding:
# handle images larger than input size
width, height = pil.size
if width != 112 or height != 112:
if width != FACE_EMBEDDING_SIZE or height != FACE_EMBEDDING_SIZE:
if width > height:
new_height = int(((height / width) * 112) // 4 * 4)
pil = pil.resize((112, new_height))
new_height = int(((height / width) * FACE_EMBEDDING_SIZE) // 4 * 4)
pil = pil.resize((FACE_EMBEDDING_SIZE, new_height))
else:
new_width = int(((width / height) * 112) // 4 * 4)
pil = pil.resize((new_width, 112))
new_width = int(((width / height) * FACE_EMBEDDING_SIZE) // 4 * 4)
pil = pil.resize((new_width, FACE_EMBEDDING_SIZE))
og = np.array(pil).astype(np.float32)
# Image must be 112x112
# Image must be FACE_EMBEDDING_SIZExFACE_EMBEDDING_SIZE
og_h, og_w, channels = og.shape
frame = np.full((112, 112, channels), (0, 0, 0), dtype=np.float32)
frame = np.full(
(FACE_EMBEDDING_SIZE, FACE_EMBEDDING_SIZE, channels),
(0, 0, 0),
dtype=np.float32,
)
# compute center offset
x_center = (112 - og_w) // 2
y_center = (112 - og_h) // 2
x_center = (FACE_EMBEDDING_SIZE - og_w) // 2
y_center = (FACE_EMBEDDING_SIZE - og_h) // 2
# copy img image into center of result image
frame[y_center : y_center + og_h, x_center : x_center + og_w] = og
frame = np.expand_dims(frame, axis=0)
frame = np.transpose(frame, (0, 3, 1, 2))
return [{"data": frame}]
return [{"image_input": frame}]
else:
raise ValueError(f"Unable to preprocess inputs for {self.model_type}")

View File

@ -1,10 +1,8 @@
"""Model Utils"""
import os
from pathlib import Path
from typing import Any
import onnx
import onnxruntime as ort
try:
@ -65,23 +63,6 @@ def get_ort_providers(
return (providers, options)
def fix_spatial_mode(path: Path) -> None:
save_path = str(path)
old_path = f"{save_path}.old"
path.rename(old_path)
model = onnx.load(old_path)
for node in model.graph.node:
if node.op_type == "BatchNormalization":
for attr in node.attribute:
if attr.name == "spatial":
attr.i = 1
onnx.save(model, save_path)
Path(old_path).unlink()
class ONNXModelRunner:
"""Run onnx models optimally based on available hardware."""