Generic classification card (#20379)

* Refactor face card into generic classification card

* Update classification data card to use classification card

* Refactor state training grid to use classification card

* Refactor grouped face card into generic component

* Combine classification objects by event

* Fixup

* Cleanup

* Cleanup

* Do not fail if a single event is not found

* Save original frame

* Cleanup

* Undo
This commit is contained in:
Nicolas Mowen 2025-10-07 13:43:06 -06:00 committed by GitHub
parent 4bea69591b
commit 37afd5da6b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 705 additions and 452 deletions

View File

@ -434,10 +434,8 @@ async def event_ids(ids: str, request: Request):
event = Event.get(Event.id == event_id)
await require_camera_access(event.camera, request=request)
except DoesNotExist:
return JSONResponse(
content=({"success": False, "message": f"Event {event_id} not found"}),
status_code=404,
)
# we should not fail the entire request if an event is not found
continue
try:
events = Event.select().where(Event.id << ids).dicts().iterator()

View File

@ -142,7 +142,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
if frame.shape != (224, 224):
try:
frame = cv2.resize(frame, (224, 224))
resized_frame = cv2.resize(frame, (224, 224))
except Exception:
logger.warning("Failed to resize image for state classification")
return
@ -151,13 +151,14 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
write_classification_attempt(
self.train_dir,
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
"none-none",
now,
"unknown",
0.0,
)
return
input = np.expand_dims(frame, axis=0)
input = np.expand_dims(resized_frame, axis=0)
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
self.interpreter.invoke()
res: np.ndarray = self.interpreter.get_tensor(
@ -171,6 +172,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
write_classification_attempt(
self.train_dir,
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
"none-none",
now,
self.labelmap[best_id],
score,
@ -284,7 +286,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
if crop.shape != (224, 224):
try:
crop = cv2.resize(crop, (224, 224))
resized_crop = cv2.resize(crop, (224, 224))
except Exception:
logger.warning("Failed to resize image for state classification")
return
@ -293,13 +295,14 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
write_classification_attempt(
self.train_dir,
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
obj_data["id"],
now,
"unknown",
0.0,
)
return
input = np.expand_dims(crop, axis=0)
input = np.expand_dims(resized_crop, axis=0)
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
self.interpreter.invoke()
res: np.ndarray = self.interpreter.get_tensor(
@ -314,6 +317,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
write_classification_attempt(
self.train_dir,
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
obj_data["id"],
now,
self.labelmap[best_id],
score,
@ -372,6 +376,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
def write_classification_attempt(
folder: str,
frame: np.ndarray,
event_id: str,
timestamp: float,
label: str,
score: float,
@ -379,7 +384,7 @@ def write_classification_attempt(
if "-" in label:
label = label.replace("-", "_")
file = os.path.join(folder, f"{timestamp}-{label}-{score}.webp")
file = os.path.join(folder, f"{event_id}-{timestamp}-{label}-{score}.webp")
os.makedirs(folder, exist_ok=True)
cv2.imwrite(file, frame)

View File

@ -263,5 +263,8 @@
"desc": "Page not found"
},
"selectItem": "Select {{item}}",
"readTheDocumentation": "Read the documentation"
"readTheDocumentation": "Read the documentation",
"information": {
"pixels": "{{area}}px"
}
}

View File

@ -5,7 +5,6 @@
"invalidName": "Invalid name. Names can only include letters, numbers, spaces, apostrophes, underscores, and hyphens."
},
"details": {
"person": "Person",
"subLabelScore": "Sub Label Score",
"scoreInfo": "The sub label score is the weighted score for all of the recognized face confidences, so this may differ from the score shown on the snapshot.",
"face": "Face Details",

View File

@ -0,0 +1,263 @@
import { baseUrl } from "@/api/baseUrl";
import useContextMenu from "@/hooks/use-contextmenu";
import { cn } from "@/lib/utils";
import {
ClassificationItemData,
ClassificationThreshold,
} from "@/types/classification";
import { Event } from "@/types/event";
import { useMemo, useRef, useState } from "react";
import { isDesktop, isMobile } from "react-device-detect";
import { useTranslation } from "react-i18next";
import TimeAgo from "../dynamic/TimeAgo";
import { Tooltip, TooltipContent, TooltipTrigger } from "../ui/tooltip";
import { LuSearch } from "react-icons/lu";
import { TooltipPortal } from "@radix-ui/react-tooltip";
import { useNavigate } from "react-router-dom";
import { getTranslatedLabel } from "@/utils/i18n";
type ClassificationCardProps = {
className?: string;
imgClassName?: string;
data: ClassificationItemData;
threshold?: ClassificationThreshold;
selected: boolean;
i18nLibrary: string;
showArea?: boolean;
onClick: (data: ClassificationItemData, meta: boolean) => void;
children?: React.ReactNode;
};
export function ClassificationCard({
className,
imgClassName,
data,
threshold,
selected,
i18nLibrary,
showArea = true,
onClick,
children,
}: ClassificationCardProps) {
const { t } = useTranslation([i18nLibrary]);
const [imageLoaded, setImageLoaded] = useState(false);
const scoreStatus = useMemo(() => {
if (!data.score || !threshold) {
return "unknown";
}
if (data.score >= threshold.recognition) {
return "match";
} else if (data.score >= threshold.unknown) {
return "potential";
} else {
return "unknown";
}
}, [data, threshold]);
// interaction
const imgRef = useRef<HTMLImageElement | null>(null);
useContextMenu(imgRef, () => {
onClick(data, true);
});
const imageArea = useMemo(() => {
if (!showArea || imgRef.current == null || !imageLoaded) {
return undefined;
}
return imgRef.current.naturalWidth * imgRef.current.naturalHeight;
}, [showArea, imageLoaded]);
return (
<>
<div
className={cn(
"relative flex cursor-pointer flex-col rounded-lg outline outline-[3px]",
className,
selected
? "shadow-selected outline-selected"
: "outline-transparent duration-500",
)}
>
<div className="relative w-full select-none overflow-hidden rounded-lg">
<img
ref={imgRef}
onLoad={() => setImageLoaded(true)}
className={cn("size-44", imgClassName, isMobile && "w-full")}
src={`${baseUrl}${data.filepath}`}
onClick={(e) => {
e.stopPropagation();
onClick(data, e.metaKey || e.ctrlKey);
}}
/>
{imageArea != undefined && (
<div className="absolute bottom-1 right-1 z-10 rounded-lg bg-black/50 px-2 py-1 text-xs text-white">
{t("information.pixels", { ns: "common", area: imageArea })}
</div>
)}
</div>
<div className="select-none p-2">
<div className="flex w-full flex-row items-center justify-between gap-2">
<div className="flex flex-col items-start text-xs text-primary-variant">
<div className="smart-capitalize">
{data.name == "unknown" ? t("details.unknown") : data.name}
</div>
{data.score && (
<div
className={cn(
"",
scoreStatus == "match" && "text-success",
scoreStatus == "potential" && "text-orange-400",
scoreStatus == "unknown" && "text-danger",
)}
>
{Math.round(data.score * 100)}%
</div>
)}
</div>
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
{children}
</div>
</div>
</div>
</div>
</>
);
}
type GroupedClassificationCardProps = {
group: ClassificationItemData[];
event?: Event;
threshold?: ClassificationThreshold;
selectedItems: string[];
i18nLibrary: string;
objectType: string;
onClick: (data: ClassificationItemData | undefined) => void;
onSelectEvent: (event: Event) => void;
children?: (data: ClassificationItemData) => React.ReactNode;
};
export function GroupedClassificationCard({
group,
event,
threshold,
selectedItems,
i18nLibrary,
objectType,
onClick,
onSelectEvent,
children,
}: GroupedClassificationCardProps) {
const navigate = useNavigate();
const { t } = useTranslation(["views/explore", i18nLibrary]);
// data
const allItemsSelected = useMemo(
() => group.every((data) => selectedItems.includes(data.filename)),
[group, selectedItems],
);
const time = useMemo(() => {
const item = group[0];
if (!item?.timestamp) {
return undefined;
}
return item.timestamp * 1000;
}, [group]);
return (
<div
className={cn(
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card p-2 outline outline-[3px]",
isMobile && "w-full",
allItemsSelected
? "shadow-selected outline-selected"
: "outline-transparent duration-500",
)}
onClick={() => {
if (selectedItems.length) {
onClick(undefined);
}
}}
onContextMenu={(e) => {
e.stopPropagation();
e.preventDefault();
onClick(undefined);
}}
>
<div className="flex flex-row justify-between">
<div className="flex flex-col gap-1">
<div className="select-none smart-capitalize">
{getTranslatedLabel(objectType)}
{event?.sub_label
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
: ": " + t("details.unknown")}
</div>
{time && (
<TimeAgo
className="text-sm text-secondary-foreground"
time={time}
dense
/>
)}
</div>
{event && (
<Tooltip>
<TooltipTrigger>
<div
className="cursor-pointer"
onClick={() => {
navigate(`/explore?event_id=${event.id}`);
}}
>
<LuSearch className="size-4 text-muted-foreground" />
</div>
</TooltipTrigger>
<TooltipPortal>
<TooltipContent>
{t("details.item.button.viewInExplore", {
ns: "views/explore",
})}
</TooltipContent>
</TooltipPortal>
</Tooltip>
)}
</div>
<div
className={cn(
"gap-2",
isDesktop
? "flex flex-row flex-wrap"
: "grid grid-cols-2 sm:grid-cols-5 lg:grid-cols-6",
)}
>
{group.map((data: ClassificationItemData) => (
<ClassificationCard
key={data.filename}
data={data}
threshold={threshold}
selected={
allItemsSelected ? false : selectedItems.includes(data.filename)
}
i18nLibrary={i18nLibrary}
onClick={(data, meta) => {
if (meta || selectedItems.length > 0) {
onClick(data);
} else if (event) {
onSelectEvent(event);
}
}}
>
{children?.(data)}
</ClassificationCard>
))}
</div>
</div>
);
}

View File

@ -1,5 +1,3 @@
import { baseUrl } from "@/api/baseUrl";
import TimeAgo from "@/components/dynamic/TimeAgo";
import AddFaceIcon from "@/components/icons/AddFaceIcon";
import ActivityIndicator from "@/components/indicators/activity-indicator";
import CreateFaceWizardDialog from "@/components/overlay/detail/FaceCreateWizardDialog";
@ -37,13 +35,12 @@ import {
TooltipContent,
TooltipTrigger,
} from "@/components/ui/tooltip";
import useContextMenu from "@/hooks/use-contextmenu";
import useKeyboardListener from "@/hooks/use-keyboard-listener";
import useOptimisticState from "@/hooks/use-optimistic-state";
import { cn } from "@/lib/utils";
import { Event } from "@/types/event";
import { FaceLibraryData, RecognizedFaceData } from "@/types/face";
import { FaceRecognitionConfig, FrigateConfig } from "@/types/frigateConfig";
import { FaceLibraryData } from "@/types/face";
import { FrigateConfig } from "@/types/frigateConfig";
import { TooltipPortal } from "@radix-ui/react-tooltip";
import axios from "axios";
import {
@ -54,7 +51,7 @@ import {
useRef,
useState,
} from "react";
import { isDesktop, isMobile } from "react-device-detect";
import { isDesktop } from "react-device-detect";
import { Trans, useTranslation } from "react-i18next";
import {
LuFolderCheck,
@ -62,16 +59,19 @@ import {
LuPencil,
LuRefreshCw,
LuScanFace,
LuSearch,
LuTrash2,
} from "react-icons/lu";
import { useNavigate } from "react-router-dom";
import { toast } from "sonner";
import useSWR from "swr";
import SearchDetailDialog, {
SearchTab,
} from "@/components/overlay/detail/SearchDetailDialog";
import { SearchResult } from "@/types/search";
import {
ClassificationCard,
GroupedClassificationCard,
} from "@/components/card/ClassificationCard";
import { ClassificationItemData } from "@/types/classification";
export default function FaceLibrary() {
const { t } = useTranslation(["views/faceLibrary"]);
@ -641,7 +641,7 @@ function TrainingGrid({
// face data
const faceGroups = useMemo(() => {
const groups: { [eventId: string]: RecognizedFaceData[] } = {};
const groups: { [eventId: string]: ClassificationItemData[] } = {};
const faces = attemptImages
.map((image) => {
@ -650,6 +650,7 @@ function TrainingGrid({
try {
return {
filename: image,
filepath: `clips/faces/train/${image}`,
timestamp: Number.parseFloat(parts[2]),
eventId: `${parts[0]}-${parts[1]}`,
name: parts[3],
@ -739,7 +740,7 @@ function TrainingGrid({
type FaceAttemptGroupProps = {
config: FrigateConfig;
group: RecognizedFaceData[];
group: ClassificationItemData[];
event?: Event;
faceNames: string[];
selectedFaces: string[];
@ -757,15 +758,16 @@ function FaceAttemptGroup({
onSelectEvent,
onRefresh,
}: FaceAttemptGroupProps) {
const navigate = useNavigate();
const { t } = useTranslation(["views/faceLibrary", "views/explore"]);
// data
const allFacesSelected = useMemo(
() => group.every((face) => selectedFaces.includes(face.filename)),
[group, selectedFaces],
);
const threshold = useMemo(() => {
return {
recognition: config.face_recognition.recognition_threshold,
unknown: config.face_recognition.unknown_score,
};
}, [config]);
// interaction
@ -799,144 +801,10 @@ function FaceAttemptGroup({
[event, group, selectedFaces, onClickFaces, onSelectEvent],
);
return (
<div
className={cn(
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card p-2 outline outline-[3px]",
isMobile && "w-full",
allFacesSelected
? "shadow-selected outline-selected"
: "outline-transparent duration-500",
)}
onClick={() => {
if (selectedFaces.length) {
handleClickEvent(true);
}
}}
onContextMenu={(e) => {
e.stopPropagation();
e.preventDefault();
handleClickEvent(true);
}}
>
<div className="flex flex-row justify-between">
<div className="flex flex-col gap-1">
<div className="select-none smart-capitalize">
{t("details.person")}
{event?.sub_label
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
: ": " + t("details.unknown")}
</div>
<TimeAgo
className="text-sm text-secondary-foreground"
time={group[0].timestamp * 1000}
dense
/>
</div>
{event && (
<Tooltip>
<TooltipTrigger>
<div
className="cursor-pointer"
onClick={() => {
navigate(`/explore?event_id=${event.id}`);
}}
>
<LuSearch className="size-4 text-muted-foreground" />
</div>
</TooltipTrigger>
<TooltipPortal>
<TooltipContent>
{t("details.item.button.viewInExplore", {
ns: "views/explore",
})}
</TooltipContent>
</TooltipPortal>
</Tooltip>
)}
</div>
<div
className={cn(
"gap-2",
isDesktop
? "flex flex-row flex-wrap"
: "grid grid-cols-2 sm:grid-cols-5 lg:grid-cols-6",
)}
>
{group.map((data: RecognizedFaceData) => (
<FaceAttempt
key={data.filename}
data={data}
faceNames={faceNames}
recognitionConfig={config.face_recognition}
selected={
allFacesSelected ? false : selectedFaces.includes(data.filename)
}
onClick={(data, meta) => {
if (meta || selectedFaces.length > 0) {
onClickFaces([data.filename], true);
} else if (event) {
onSelectEvent(event);
}
}}
onRefresh={onRefresh}
/>
))}
</div>
</div>
);
}
type FaceAttemptProps = {
data: RecognizedFaceData;
faceNames: string[];
recognitionConfig: FaceRecognitionConfig;
selected: boolean;
onClick: (data: RecognizedFaceData, meta: boolean) => void;
onRefresh: () => void;
};
function FaceAttempt({
data,
faceNames,
recognitionConfig,
selected,
onClick,
onRefresh,
}: FaceAttemptProps) {
const { t } = useTranslation(["views/faceLibrary"]);
const [imageLoaded, setImageLoaded] = useState(false);
const scoreStatus = useMemo(() => {
if (data.score >= recognitionConfig.recognition_threshold) {
return "match";
} else if (data.score >= recognitionConfig.unknown_score) {
return "potential";
} else {
return "unknown";
}
}, [data, recognitionConfig]);
// interaction
const imgRef = useRef<HTMLImageElement | null>(null);
useContextMenu(imgRef, () => {
onClick(data, true);
});
const imageArea = useMemo(() => {
if (imgRef.current == null || !imageLoaded) {
return undefined;
}
return imgRef.current.naturalWidth * imgRef.current.naturalHeight;
}, [imageLoaded]);
// api calls
const onTrainAttempt = useCallback(
(trainName: string) => {
(data: ClassificationItemData, trainName: string) => {
axios
.post(`/faces/train/${trainName}/classify`, {
training_file: data.filename,
@ -959,96 +827,74 @@ function FaceAttempt({
});
});
},
[data, onRefresh, t],
[onRefresh, t],
);
const onReprocess = useCallback(() => {
axios
.post(`/faces/reprocess`, { training_file: data.filename })
.then((resp) => {
if (resp.status == 200) {
toast.success(t("toast.success.updatedFaceScore"), {
position: "top-center",
});
onRefresh();
}
})
.catch((error) => {
const errorMessage =
error.response?.data?.message ||
error.response?.data?.detail ||
"Unknown error";
toast.error(t("toast.error.updateFaceScoreFailed", { errorMessage }), {
position: "top-center",
const onReprocess = useCallback(
(data: ClassificationItemData) => {
axios
.post(`/faces/reprocess`, { training_file: data.filename })
.then((resp) => {
if (resp.status == 200) {
toast.success(t("toast.success.updatedFaceScore"), {
position: "top-center",
});
onRefresh();
}
})
.catch((error) => {
const errorMessage =
error.response?.data?.message ||
error.response?.data?.detail ||
"Unknown error";
toast.error(
t("toast.error.updateFaceScoreFailed", { errorMessage }),
{
position: "top-center",
},
);
});
});
}, [data, onRefresh, t]);
},
[onRefresh, t],
);
return (
<>
<div
className={cn(
"relative flex cursor-pointer flex-col rounded-lg outline outline-[3px]",
selected
? "shadow-selected outline-selected"
: "outline-transparent duration-500",
)}
>
<div className="relative w-full select-none overflow-hidden rounded-lg">
<img
ref={imgRef}
onLoad={() => setImageLoaded(true)}
className={cn("size-44", isMobile && "w-full")}
src={`${baseUrl}clips/faces/train/${data.filename}`}
onClick={(e) => {
e.stopPropagation();
onClick(data, e.metaKey || e.ctrlKey);
}}
/>
{imageArea != undefined && (
<div className="absolute bottom-1 right-1 z-10 rounded-lg bg-black/50 px-2 py-1 text-xs text-white">
{t("pixels", { area: imageArea })}
</div>
)}
</div>
<div className="select-none p-2">
<div className="flex w-full flex-row items-center justify-between gap-2">
<div className="flex flex-col items-start text-xs text-primary-variant">
<div className="smart-capitalize">
{data.name == "unknown" ? t("details.unknown") : data.name}
</div>
<div
className={cn(
"",
scoreStatus == "match" && "text-success",
scoreStatus == "potential" && "text-orange-400",
scoreStatus == "unknown" && "text-danger",
)}
>
{Math.round(data.score * 100)}%
</div>
</div>
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
<FaceSelectionDialog
faceNames={faceNames}
onTrainAttempt={onTrainAttempt}
>
<AddFaceIcon className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
</FaceSelectionDialog>
<Tooltip>
<TooltipTrigger>
<LuRefreshCw
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={() => onReprocess()}
/>
</TooltipTrigger>
<TooltipContent>{t("button.reprocessFace")}</TooltipContent>
</Tooltip>
</div>
</div>
</div>
</div>
</>
<GroupedClassificationCard
group={group}
event={event}
threshold={threshold}
selectedItems={selectedFaces}
i18nLibrary="views/faceLibrary"
objectType="person"
onClick={(data) => {
if (data) {
onClickFaces([data.filename], true);
} else {
handleClickEvent(true);
}
}}
onSelectEvent={onSelectEvent}
>
{(data) => (
<>
<FaceSelectionDialog
faceNames={faceNames}
onTrainAttempt={(name) => onTrainAttempt(data, name)}
>
<AddFaceIcon className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
</FaceSelectionDialog>
<Tooltip>
<TooltipTrigger>
<LuRefreshCw
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={() => onReprocess(data)}
/>
</TooltipTrigger>
<TooltipContent>{t("button.reprocessFace")}</TooltipContent>
</Tooltip>
</>
)}
</GroupedClassificationCard>
);
}
@ -1093,80 +939,32 @@ function FaceGrid({
)}
>
{sortedFaces.map((image: string) => (
<FaceImage
<ClassificationCard
className="gap-2 rounded-lg bg-card p-2"
key={image}
name={pageToggle}
image={image}
data={{
name: pageToggle,
filename: image,
filepath: `clips/faces/${pageToggle}/${image}`,
}}
selected={selectedFaces.includes(image)}
onClickFaces={onClickFaces}
onDelete={onDelete}
/>
i18nLibrary="views/faceLibrary"
onClick={(data, meta) => onClickFaces([data.filename], meta)}
>
<Tooltip>
<TooltipTrigger>
<LuTrash2
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={(e) => {
e.stopPropagation();
onDelete(pageToggle, [image]);
}}
/>
</TooltipTrigger>
<TooltipContent>{t("button.deleteFaceAttempts")}</TooltipContent>
</Tooltip>
</ClassificationCard>
))}
</div>
);
}
type FaceImageProps = {
name: string;
image: string;
selected: boolean;
onClickFaces: (images: string[], ctrl: boolean) => void;
onDelete: (name: string, ids: string[]) => void;
};
function FaceImage({
name,
image,
selected,
onClickFaces,
onDelete,
}: FaceImageProps) {
const { t } = useTranslation(["views/faceLibrary"]);
return (
<div
className={cn(
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
selected
? "shadow-selected outline-selected"
: "outline-transparent duration-500",
)}
onClick={(e) => {
e.stopPropagation();
onClickFaces([image], e.ctrlKey || e.metaKey);
}}
>
<div
className={cn(
"w-full overflow-hidden p-2 *:text-card-foreground",
isMobile && "flex justify-center",
)}
>
<img
className="h-40 rounded-lg"
src={`${baseUrl}clips/faces/${name}/${image}`}
/>
</div>
<div className="rounded-b-lg bg-card p-3">
<div className="flex w-full flex-row items-center justify-between gap-2">
<div className="flex flex-col items-start text-xs text-primary-variant">
<div className="smart-capitalize">{name}</div>
</div>
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
<Tooltip>
<TooltipTrigger>
<LuTrash2
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={(e) => {
e.stopPropagation();
onDelete(name, [image]);
}}
/>
</TooltipTrigger>
<TooltipContent>{t("button.deleteFaceAttempts")}</TooltipContent>
</Tooltip>
</div>
</div>
</div>
</div>
);
}

View File

@ -6,3 +6,17 @@ export type TrainFilter = {
min_score?: number;
max_score?: number;
};
export type ClassificationItemData = {
filepath: string;
filename: string;
name: string;
timestamp?: number;
eventId?: string;
score?: number;
};
export type ClassificationThreshold = {
recognition: number;
unknown: number;
};

View File

@ -1,11 +1,3 @@
export type FaceLibraryData = {
[faceName: string]: string[];
};
export type RecognizedFaceData = {
filename: string;
timestamp: number;
eventId: string;
name: string;
score: number;
};

View File

@ -38,7 +38,11 @@ export default function ModelSelectionView({
return (
<div className="flex size-full gap-2 p-2">
{classificationConfigs.map((config) => (
<ModelCard config={config} onClick={() => onClick(config)} />
<ModelCard
key={config.name}
config={config}
onClick={() => onClick(config)}
/>
))}
</div>
);

View File

@ -1,4 +1,3 @@
import { baseUrl } from "@/api/baseUrl";
import TextEntryDialog from "@/components/overlay/dialog/TextEntryDialog";
import { Button, buttonVariants } from "@/components/ui/button";
import {
@ -60,7 +59,16 @@ import { IoMdArrowRoundBack } from "react-icons/io";
import { MdAutoFixHigh } from "react-icons/md";
import TrainFilterDialog from "@/components/overlay/dialog/TrainFilterDialog";
import useApiFilter from "@/hooks/use-api-filter";
import { TrainFilter } from "@/types/classification";
import { ClassificationItemData, TrainFilter } from "@/types/classification";
import {
ClassificationCard,
GroupedClassificationCard,
} from "@/components/card/ClassificationCard";
import { Event } from "@/types/event";
import SearchDetailDialog, {
SearchTab,
} from "@/components/overlay/detail/SearchDetailDialog";
import { SearchResult } from "@/types/search";
type ModelTrainingViewProps = {
model: CustomClassificationModelConfig;
@ -626,53 +634,34 @@ function DatasetGrid({
className="scrollbar-container flex flex-wrap gap-2 overflow-y-auto p-2"
>
{classData.map((image) => (
<div
className={cn(
"flex w-60 cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
selectedImages.includes(image)
? "shadow-selected outline-selected"
: "outline-transparent duration-500",
)}
onClick={(e) => {
e.stopPropagation();
if (e.ctrlKey || e.metaKey) {
onClickImages([image], true);
}
<ClassificationCard
key={image}
className="w-60 gap-4 rounded-lg bg-card p-2"
imgClassName="size-auto"
data={{
filename: image,
filepath: `clips/${modelName}/dataset/${categoryName}/${image}`,
name: "",
}}
selected={selectedImages.includes(image)}
i18nLibrary="views/classificationModel"
onClick={(data, _) => onClickImages([data.filename], true)}
>
<div
className={cn(
"w-full overflow-hidden p-2 *:text-card-foreground",
isMobile && "flex justify-center",
)}
>
<img
className="rounded-lg"
src={`${baseUrl}clips/${modelName}/dataset/${categoryName}/${image}`}
/>
</div>
<div className="rounded-b-lg bg-card p-3">
<div className="flex w-full flex-row items-center justify-between gap-2">
<div className="flex w-full flex-row items-start justify-end gap-5 md:gap-4">
<Tooltip>
<TooltipTrigger>
<LuTrash2
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={(e) => {
e.stopPropagation();
onDelete([image]);
}}
/>
</TooltipTrigger>
<TooltipContent>
{t("button.deleteClassificationAttempts")}
</TooltipContent>
</Tooltip>
</div>
</div>
</div>
</div>
<Tooltip>
<TooltipTrigger>
<LuTrash2
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={(e) => {
e.stopPropagation();
onDelete([image]);
}}
/>
</TooltipTrigger>
<TooltipContent>
{t("button.deleteClassificationAttempts")}
</TooltipContent>
</Tooltip>
</ClassificationCard>
))}
</div>
);
@ -700,20 +689,19 @@ function TrainGrid({
onRefresh,
onDelete,
}: TrainGridProps) {
const { t } = useTranslation(["views/classificationModel"]);
const trainData = useMemo(
const trainData = useMemo<ClassificationItemData[]>(
() =>
trainImages
.map((raw) => {
const parts = raw.replaceAll(".webp", "").split("-");
const rawScore = Number.parseFloat(parts[2]);
const rawScore = Number.parseFloat(parts[4]);
return {
raw,
timestamp: parts[0],
label: parts[1],
score: rawScore * 100,
truePositive: rawScore >= model.threshold,
filename: raw,
filepath: `clips/${model.name}/train/${raw}`,
timestamp: Number.parseFloat(parts[2]),
eventId: `${parts[0]}-${parts[1]}`,
name: parts[3],
score: rawScore,
};
})
.filter((data) => {
@ -721,10 +709,7 @@ function TrainGrid({
return true;
}
if (
trainFilter.classes &&
!trainFilter.classes.includes(data.label)
) {
if (trainFilter.classes && !trainFilter.classes.includes(data.name)) {
return false;
}
@ -744,10 +729,68 @@ function TrainGrid({
return true;
})
.sort((a, b) => b.timestamp.localeCompare(a.timestamp)),
.sort((a, b) => b.timestamp - a.timestamp),
[model, trainImages, trainFilter],
);
if (model.state_config) {
return (
<StateTrainGrid
model={model}
contentRef={contentRef}
classes={classes}
trainData={trainData}
selectedImages={selectedImages}
onClickImages={onClickImages}
onRefresh={onRefresh}
onDelete={onDelete}
/>
);
}
return (
<ObjectTrainGrid
model={model}
contentRef={contentRef}
classes={classes}
trainData={trainData}
selectedImages={selectedImages}
onClickImages={onClickImages}
onRefresh={onRefresh}
onDelete={onDelete}
/>
);
}
type StateTrainGridProps = {
model: CustomClassificationModelConfig;
contentRef: MutableRefObject<HTMLDivElement | null>;
classes: string[];
trainData?: ClassificationItemData[];
selectedImages: string[];
onClickImages: (images: string[], ctrl: boolean) => void;
onRefresh: () => void;
onDelete: (ids: string[]) => void;
};
function StateTrainGrid({
model,
contentRef,
classes,
trainData,
selectedImages,
onClickImages,
onRefresh,
onDelete,
}: StateTrainGridProps) {
const { t } = useTranslation(["views/classificationModel"]);
const threshold = useMemo(() => {
return {
recognition: model.threshold,
unknown: model.threshold,
};
}, [model]);
return (
<div
ref={contentRef}
@ -757,74 +800,208 @@ function TrainGrid({
)}
>
{trainData?.map((data) => (
<div
key={data.timestamp}
className={cn(
"flex w-56 cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
selectedImages.includes(data.raw)
? "shadow-selected outline-selected"
: "outline-transparent duration-500",
isMobile && "w-[48%]",
)}
onClick={(e) => {
e.stopPropagation();
onClickImages([data.raw], e.ctrlKey || e.metaKey);
}}
<ClassificationCard
key={data.filename}
className="w-60 gap-2 rounded-lg bg-card p-2"
imgClassName="size-auto"
data={data}
threshold={threshold}
selected={selectedImages.includes(data.filename)}
i18nLibrary="views/classificationModel"
showArea={false}
onClick={(data, meta) => onClickImages([data.filename], meta)}
>
<div
className={cn(
"w-full overflow-hidden p-2 *:text-card-foreground",
isMobile && "flex justify-center",
)}
<ClassificationSelectionDialog
classes={classes}
modelName={model.name}
image={data.filename}
onRefresh={onRefresh}
>
<img
className="w-56 rounded-lg"
src={`${baseUrl}clips/${model.name}/train/${data.raw}`}
/>
</div>
<div className="rounded-b-lg bg-card p-3">
<div className="flex w-full flex-row items-center justify-between gap-2">
<div className="flex flex-col items-start text-xs text-primary-variant">
<div className="smart-capitalize">
{data.label.replaceAll("_", " ")}
</div>
<div
className={cn(
"",
data.truePositive ? "text-success" : "text-danger",
)}
>
{data.score}%
</div>
</div>
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
<ClassificationSelectionDialog
classes={classes}
modelName={model.name}
image={data.raw}
onRefresh={onRefresh}
>
<TbCategoryPlus className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
</ClassificationSelectionDialog>
<Tooltip>
<TooltipTrigger>
<LuTrash2
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={(e) => {
e.stopPropagation();
onDelete([data.raw]);
}}
/>
</TooltipTrigger>
<TooltipContent>
{t("button.deleteClassificationAttempts")}
</TooltipContent>
</Tooltip>
</div>
</div>
</div>
</div>
<TbCategoryPlus className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
</ClassificationSelectionDialog>
<Tooltip>
<TooltipTrigger>
<LuTrash2
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={(e) => {
e.stopPropagation();
onDelete([data.filename]);
}}
/>
</TooltipTrigger>
<TooltipContent>
{t("button.deleteClassificationAttempts")}
</TooltipContent>
</Tooltip>
</ClassificationCard>
))}
</div>
);
}
type ObjectTrainGridProps = {
model: CustomClassificationModelConfig;
contentRef: MutableRefObject<HTMLDivElement | null>;
classes: string[];
trainData?: ClassificationItemData[];
selectedImages: string[];
onClickImages: (images: string[], ctrl: boolean) => void;
onRefresh: () => void;
onDelete: (ids: string[]) => void;
};
function ObjectTrainGrid({
model,
contentRef,
classes,
trainData,
selectedImages,
onClickImages,
onRefresh,
onDelete,
}: ObjectTrainGridProps) {
const { t } = useTranslation(["views/classificationModel"]);
// item data
const groups = useMemo(() => {
const groups: { [eventId: string]: ClassificationItemData[] } = {};
trainData
?.sort((a, b) => a.eventId!.localeCompare(b.eventId!))
.reverse()
.forEach((data) => {
if (groups[data.eventId!]) {
groups[data.eventId!].push(data);
} else {
groups[data.eventId!] = [data];
}
});
return groups;
}, [trainData]);
const eventIdsQuery = useMemo(() => Object.keys(groups).join(","), [groups]);
const { data: events } = useSWR<Event[]>([
"event_ids",
{ ids: eventIdsQuery },
]);
const threshold = useMemo(() => {
return {
recognition: model.threshold,
unknown: model.threshold,
};
}, [model]);
// selection
const [selectedEvent, setSelectedEvent] = useState<Event>();
const [dialogTab, setDialogTab] = useState<SearchTab>("details");
// handlers
const handleClickEvent = useCallback(
(
group: ClassificationItemData[],
event: Event | undefined,
meta: boolean,
) => {
if (event && selectedImages.length == 0 && !meta) {
setSelectedEvent(event);
} else {
const anySelected =
group.find((item) => selectedImages.includes(item.filename)) !=
undefined;
if (anySelected) {
// deselect all
const toDeselect: string[] = [];
group.forEach((item) => {
if (selectedImages.includes(item.filename)) {
toDeselect.push(item.filename);
}
});
onClickImages(toDeselect, false);
} else {
// select all
onClickImages(
group.map((item) => item.filename),
true,
);
}
}
},
[selectedImages, onClickImages],
);
return (
<>
<SearchDetailDialog
search={
selectedEvent ? (selectedEvent as unknown as SearchResult) : undefined
}
page={dialogTab}
setSimilarity={undefined}
setSearchPage={setDialogTab}
setSearch={(search) => setSelectedEvent(search as unknown as Event)}
setInputFocused={() => {}}
/>
<div
ref={contentRef}
className="scrollbar-container flex flex-wrap gap-2 overflow-y-scroll p-1"
>
{Object.entries(groups).map(([key, group]) => {
const event = events?.find((ev) => ev.id == key);
return (
<GroupedClassificationCard
key={key}
group={group}
event={event}
threshold={threshold}
selectedItems={selectedImages}
i18nLibrary="views/classificationModel"
objectType={model.object_config?.objects?.at(0) ?? "Object"}
onClick={(data) => {
if (data) {
onClickImages([data.filename], true);
} else {
handleClickEvent(group, event, true);
}
}}
onSelectEvent={() => {}}
>
{(data) => (
<>
<ClassificationSelectionDialog
classes={classes}
modelName={model.name}
image={data.filename}
onRefresh={onRefresh}
>
<TbCategoryPlus className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
</ClassificationSelectionDialog>
<Tooltip>
<TooltipTrigger>
<LuTrash2
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={(e) => {
e.stopPropagation();
onDelete([data.filename]);
}}
/>
</TooltipTrigger>
<TooltipContent>
{t("button.deleteClassificationAttempts")}
</TooltipContent>
</Tooltip>
</>
)}
</GroupedClassificationCard>
);
})}
</div>
</>
);
}