mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 13:34:13 +03:00
Generic classification card (#20379)
* Refactor face card into generic classification card * Update classification data card to use classification card * Refactor state training grid to use classification card * Refactor grouped face card into generic component * Combine classification objects by event * Fixup * Cleanup * Cleanup * Do not fail if a single event is not found * Save original frame * Cleanup * Undo
This commit is contained in:
parent
4bea69591b
commit
37afd5da6b
@ -434,10 +434,8 @@ async def event_ids(ids: str, request: Request):
|
||||
event = Event.get(Event.id == event_id)
|
||||
await require_camera_access(event.camera, request=request)
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": f"Event {event_id} not found"}),
|
||||
status_code=404,
|
||||
)
|
||||
# we should not fail the entire request if an event is not found
|
||||
continue
|
||||
|
||||
try:
|
||||
events = Event.select().where(Event.id << ids).dicts().iterator()
|
||||
|
||||
@ -142,7 +142,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
|
||||
if frame.shape != (224, 224):
|
||||
try:
|
||||
frame = cv2.resize(frame, (224, 224))
|
||||
resized_frame = cv2.resize(frame, (224, 224))
|
||||
except Exception:
|
||||
logger.warning("Failed to resize image for state classification")
|
||||
return
|
||||
@ -151,13 +151,14 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||
"none-none",
|
||||
now,
|
||||
"unknown",
|
||||
0.0,
|
||||
)
|
||||
return
|
||||
|
||||
input = np.expand_dims(frame, axis=0)
|
||||
input = np.expand_dims(resized_frame, axis=0)
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
|
||||
self.interpreter.invoke()
|
||||
res: np.ndarray = self.interpreter.get_tensor(
|
||||
@ -171,6 +172,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||
"none-none",
|
||||
now,
|
||||
self.labelmap[best_id],
|
||||
score,
|
||||
@ -284,7 +286,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
|
||||
if crop.shape != (224, 224):
|
||||
try:
|
||||
crop = cv2.resize(crop, (224, 224))
|
||||
resized_crop = cv2.resize(crop, (224, 224))
|
||||
except Exception:
|
||||
logger.warning("Failed to resize image for state classification")
|
||||
return
|
||||
@ -293,13 +295,14 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
|
||||
obj_data["id"],
|
||||
now,
|
||||
"unknown",
|
||||
0.0,
|
||||
)
|
||||
return
|
||||
|
||||
input = np.expand_dims(crop, axis=0)
|
||||
input = np.expand_dims(resized_crop, axis=0)
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
|
||||
self.interpreter.invoke()
|
||||
res: np.ndarray = self.interpreter.get_tensor(
|
||||
@ -314,6 +317,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
|
||||
obj_data["id"],
|
||||
now,
|
||||
self.labelmap[best_id],
|
||||
score,
|
||||
@ -372,6 +376,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
def write_classification_attempt(
|
||||
folder: str,
|
||||
frame: np.ndarray,
|
||||
event_id: str,
|
||||
timestamp: float,
|
||||
label: str,
|
||||
score: float,
|
||||
@ -379,7 +384,7 @@ def write_classification_attempt(
|
||||
if "-" in label:
|
||||
label = label.replace("-", "_")
|
||||
|
||||
file = os.path.join(folder, f"{timestamp}-{label}-{score}.webp")
|
||||
file = os.path.join(folder, f"{event_id}-{timestamp}-{label}-{score}.webp")
|
||||
os.makedirs(folder, exist_ok=True)
|
||||
cv2.imwrite(file, frame)
|
||||
|
||||
|
||||
@ -263,5 +263,8 @@
|
||||
"desc": "Page not found"
|
||||
},
|
||||
"selectItem": "Select {{item}}",
|
||||
"readTheDocumentation": "Read the documentation"
|
||||
"readTheDocumentation": "Read the documentation",
|
||||
"information": {
|
||||
"pixels": "{{area}}px"
|
||||
}
|
||||
}
|
||||
|
||||
@ -5,7 +5,6 @@
|
||||
"invalidName": "Invalid name. Names can only include letters, numbers, spaces, apostrophes, underscores, and hyphens."
|
||||
},
|
||||
"details": {
|
||||
"person": "Person",
|
||||
"subLabelScore": "Sub Label Score",
|
||||
"scoreInfo": "The sub label score is the weighted score for all of the recognized face confidences, so this may differ from the score shown on the snapshot.",
|
||||
"face": "Face Details",
|
||||
|
||||
263
web/src/components/card/ClassificationCard.tsx
Normal file
263
web/src/components/card/ClassificationCard.tsx
Normal file
@ -0,0 +1,263 @@
|
||||
import { baseUrl } from "@/api/baseUrl";
|
||||
import useContextMenu from "@/hooks/use-contextmenu";
|
||||
import { cn } from "@/lib/utils";
|
||||
import {
|
||||
ClassificationItemData,
|
||||
ClassificationThreshold,
|
||||
} from "@/types/classification";
|
||||
import { Event } from "@/types/event";
|
||||
import { useMemo, useRef, useState } from "react";
|
||||
import { isDesktop, isMobile } from "react-device-detect";
|
||||
import { useTranslation } from "react-i18next";
|
||||
import TimeAgo from "../dynamic/TimeAgo";
|
||||
import { Tooltip, TooltipContent, TooltipTrigger } from "../ui/tooltip";
|
||||
import { LuSearch } from "react-icons/lu";
|
||||
import { TooltipPortal } from "@radix-ui/react-tooltip";
|
||||
import { useNavigate } from "react-router-dom";
|
||||
import { getTranslatedLabel } from "@/utils/i18n";
|
||||
|
||||
type ClassificationCardProps = {
|
||||
className?: string;
|
||||
imgClassName?: string;
|
||||
data: ClassificationItemData;
|
||||
threshold?: ClassificationThreshold;
|
||||
selected: boolean;
|
||||
i18nLibrary: string;
|
||||
showArea?: boolean;
|
||||
onClick: (data: ClassificationItemData, meta: boolean) => void;
|
||||
children?: React.ReactNode;
|
||||
};
|
||||
export function ClassificationCard({
|
||||
className,
|
||||
imgClassName,
|
||||
data,
|
||||
threshold,
|
||||
selected,
|
||||
i18nLibrary,
|
||||
showArea = true,
|
||||
onClick,
|
||||
children,
|
||||
}: ClassificationCardProps) {
|
||||
const { t } = useTranslation([i18nLibrary]);
|
||||
const [imageLoaded, setImageLoaded] = useState(false);
|
||||
|
||||
const scoreStatus = useMemo(() => {
|
||||
if (!data.score || !threshold) {
|
||||
return "unknown";
|
||||
}
|
||||
|
||||
if (data.score >= threshold.recognition) {
|
||||
return "match";
|
||||
} else if (data.score >= threshold.unknown) {
|
||||
return "potential";
|
||||
} else {
|
||||
return "unknown";
|
||||
}
|
||||
}, [data, threshold]);
|
||||
|
||||
// interaction
|
||||
|
||||
const imgRef = useRef<HTMLImageElement | null>(null);
|
||||
|
||||
useContextMenu(imgRef, () => {
|
||||
onClick(data, true);
|
||||
});
|
||||
|
||||
const imageArea = useMemo(() => {
|
||||
if (!showArea || imgRef.current == null || !imageLoaded) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
return imgRef.current.naturalWidth * imgRef.current.naturalHeight;
|
||||
}, [showArea, imageLoaded]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<div
|
||||
className={cn(
|
||||
"relative flex cursor-pointer flex-col rounded-lg outline outline-[3px]",
|
||||
className,
|
||||
selected
|
||||
? "shadow-selected outline-selected"
|
||||
: "outline-transparent duration-500",
|
||||
)}
|
||||
>
|
||||
<div className="relative w-full select-none overflow-hidden rounded-lg">
|
||||
<img
|
||||
ref={imgRef}
|
||||
onLoad={() => setImageLoaded(true)}
|
||||
className={cn("size-44", imgClassName, isMobile && "w-full")}
|
||||
src={`${baseUrl}${data.filepath}`}
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onClick(data, e.metaKey || e.ctrlKey);
|
||||
}}
|
||||
/>
|
||||
{imageArea != undefined && (
|
||||
<div className="absolute bottom-1 right-1 z-10 rounded-lg bg-black/50 px-2 py-1 text-xs text-white">
|
||||
{t("information.pixels", { ns: "common", area: imageArea })}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
<div className="select-none p-2">
|
||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
||||
<div className="flex flex-col items-start text-xs text-primary-variant">
|
||||
<div className="smart-capitalize">
|
||||
{data.name == "unknown" ? t("details.unknown") : data.name}
|
||||
</div>
|
||||
{data.score && (
|
||||
<div
|
||||
className={cn(
|
||||
"",
|
||||
scoreStatus == "match" && "text-success",
|
||||
scoreStatus == "potential" && "text-orange-400",
|
||||
scoreStatus == "unknown" && "text-danger",
|
||||
)}
|
||||
>
|
||||
{Math.round(data.score * 100)}%
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
|
||||
{children}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
type GroupedClassificationCardProps = {
|
||||
group: ClassificationItemData[];
|
||||
event?: Event;
|
||||
threshold?: ClassificationThreshold;
|
||||
selectedItems: string[];
|
||||
i18nLibrary: string;
|
||||
objectType: string;
|
||||
onClick: (data: ClassificationItemData | undefined) => void;
|
||||
onSelectEvent: (event: Event) => void;
|
||||
children?: (data: ClassificationItemData) => React.ReactNode;
|
||||
};
|
||||
export function GroupedClassificationCard({
|
||||
group,
|
||||
event,
|
||||
threshold,
|
||||
selectedItems,
|
||||
i18nLibrary,
|
||||
objectType,
|
||||
onClick,
|
||||
onSelectEvent,
|
||||
children,
|
||||
}: GroupedClassificationCardProps) {
|
||||
const navigate = useNavigate();
|
||||
const { t } = useTranslation(["views/explore", i18nLibrary]);
|
||||
|
||||
// data
|
||||
|
||||
const allItemsSelected = useMemo(
|
||||
() => group.every((data) => selectedItems.includes(data.filename)),
|
||||
[group, selectedItems],
|
||||
);
|
||||
|
||||
const time = useMemo(() => {
|
||||
const item = group[0];
|
||||
|
||||
if (!item?.timestamp) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
return item.timestamp * 1000;
|
||||
}, [group]);
|
||||
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card p-2 outline outline-[3px]",
|
||||
isMobile && "w-full",
|
||||
allItemsSelected
|
||||
? "shadow-selected outline-selected"
|
||||
: "outline-transparent duration-500",
|
||||
)}
|
||||
onClick={() => {
|
||||
if (selectedItems.length) {
|
||||
onClick(undefined);
|
||||
}
|
||||
}}
|
||||
onContextMenu={(e) => {
|
||||
e.stopPropagation();
|
||||
e.preventDefault();
|
||||
onClick(undefined);
|
||||
}}
|
||||
>
|
||||
<div className="flex flex-row justify-between">
|
||||
<div className="flex flex-col gap-1">
|
||||
<div className="select-none smart-capitalize">
|
||||
{getTranslatedLabel(objectType)}
|
||||
{event?.sub_label
|
||||
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
|
||||
: ": " + t("details.unknown")}
|
||||
</div>
|
||||
{time && (
|
||||
<TimeAgo
|
||||
className="text-sm text-secondary-foreground"
|
||||
time={time}
|
||||
dense
|
||||
/>
|
||||
)}
|
||||
</div>
|
||||
{event && (
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<div
|
||||
className="cursor-pointer"
|
||||
onClick={() => {
|
||||
navigate(`/explore?event_id=${event.id}`);
|
||||
}}
|
||||
>
|
||||
<LuSearch className="size-4 text-muted-foreground" />
|
||||
</div>
|
||||
</TooltipTrigger>
|
||||
<TooltipPortal>
|
||||
<TooltipContent>
|
||||
{t("details.item.button.viewInExplore", {
|
||||
ns: "views/explore",
|
||||
})}
|
||||
</TooltipContent>
|
||||
</TooltipPortal>
|
||||
</Tooltip>
|
||||
)}
|
||||
</div>
|
||||
|
||||
<div
|
||||
className={cn(
|
||||
"gap-2",
|
||||
isDesktop
|
||||
? "flex flex-row flex-wrap"
|
||||
: "grid grid-cols-2 sm:grid-cols-5 lg:grid-cols-6",
|
||||
)}
|
||||
>
|
||||
{group.map((data: ClassificationItemData) => (
|
||||
<ClassificationCard
|
||||
key={data.filename}
|
||||
data={data}
|
||||
threshold={threshold}
|
||||
selected={
|
||||
allItemsSelected ? false : selectedItems.includes(data.filename)
|
||||
}
|
||||
i18nLibrary={i18nLibrary}
|
||||
onClick={(data, meta) => {
|
||||
if (meta || selectedItems.length > 0) {
|
||||
onClick(data);
|
||||
} else if (event) {
|
||||
onSelectEvent(event);
|
||||
}
|
||||
}}
|
||||
>
|
||||
{children?.(data)}
|
||||
</ClassificationCard>
|
||||
))}
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@ -1,5 +1,3 @@
|
||||
import { baseUrl } from "@/api/baseUrl";
|
||||
import TimeAgo from "@/components/dynamic/TimeAgo";
|
||||
import AddFaceIcon from "@/components/icons/AddFaceIcon";
|
||||
import ActivityIndicator from "@/components/indicators/activity-indicator";
|
||||
import CreateFaceWizardDialog from "@/components/overlay/detail/FaceCreateWizardDialog";
|
||||
@ -37,13 +35,12 @@ import {
|
||||
TooltipContent,
|
||||
TooltipTrigger,
|
||||
} from "@/components/ui/tooltip";
|
||||
import useContextMenu from "@/hooks/use-contextmenu";
|
||||
import useKeyboardListener from "@/hooks/use-keyboard-listener";
|
||||
import useOptimisticState from "@/hooks/use-optimistic-state";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { Event } from "@/types/event";
|
||||
import { FaceLibraryData, RecognizedFaceData } from "@/types/face";
|
||||
import { FaceRecognitionConfig, FrigateConfig } from "@/types/frigateConfig";
|
||||
import { FaceLibraryData } from "@/types/face";
|
||||
import { FrigateConfig } from "@/types/frigateConfig";
|
||||
import { TooltipPortal } from "@radix-ui/react-tooltip";
|
||||
import axios from "axios";
|
||||
import {
|
||||
@ -54,7 +51,7 @@ import {
|
||||
useRef,
|
||||
useState,
|
||||
} from "react";
|
||||
import { isDesktop, isMobile } from "react-device-detect";
|
||||
import { isDesktop } from "react-device-detect";
|
||||
import { Trans, useTranslation } from "react-i18next";
|
||||
import {
|
||||
LuFolderCheck,
|
||||
@ -62,16 +59,19 @@ import {
|
||||
LuPencil,
|
||||
LuRefreshCw,
|
||||
LuScanFace,
|
||||
LuSearch,
|
||||
LuTrash2,
|
||||
} from "react-icons/lu";
|
||||
import { useNavigate } from "react-router-dom";
|
||||
import { toast } from "sonner";
|
||||
import useSWR from "swr";
|
||||
import SearchDetailDialog, {
|
||||
SearchTab,
|
||||
} from "@/components/overlay/detail/SearchDetailDialog";
|
||||
import { SearchResult } from "@/types/search";
|
||||
import {
|
||||
ClassificationCard,
|
||||
GroupedClassificationCard,
|
||||
} from "@/components/card/ClassificationCard";
|
||||
import { ClassificationItemData } from "@/types/classification";
|
||||
|
||||
export default function FaceLibrary() {
|
||||
const { t } = useTranslation(["views/faceLibrary"]);
|
||||
@ -641,7 +641,7 @@ function TrainingGrid({
|
||||
// face data
|
||||
|
||||
const faceGroups = useMemo(() => {
|
||||
const groups: { [eventId: string]: RecognizedFaceData[] } = {};
|
||||
const groups: { [eventId: string]: ClassificationItemData[] } = {};
|
||||
|
||||
const faces = attemptImages
|
||||
.map((image) => {
|
||||
@ -650,6 +650,7 @@ function TrainingGrid({
|
||||
try {
|
||||
return {
|
||||
filename: image,
|
||||
filepath: `clips/faces/train/${image}`,
|
||||
timestamp: Number.parseFloat(parts[2]),
|
||||
eventId: `${parts[0]}-${parts[1]}`,
|
||||
name: parts[3],
|
||||
@ -739,7 +740,7 @@ function TrainingGrid({
|
||||
|
||||
type FaceAttemptGroupProps = {
|
||||
config: FrigateConfig;
|
||||
group: RecognizedFaceData[];
|
||||
group: ClassificationItemData[];
|
||||
event?: Event;
|
||||
faceNames: string[];
|
||||
selectedFaces: string[];
|
||||
@ -757,15 +758,16 @@ function FaceAttemptGroup({
|
||||
onSelectEvent,
|
||||
onRefresh,
|
||||
}: FaceAttemptGroupProps) {
|
||||
const navigate = useNavigate();
|
||||
const { t } = useTranslation(["views/faceLibrary", "views/explore"]);
|
||||
|
||||
// data
|
||||
|
||||
const allFacesSelected = useMemo(
|
||||
() => group.every((face) => selectedFaces.includes(face.filename)),
|
||||
[group, selectedFaces],
|
||||
);
|
||||
const threshold = useMemo(() => {
|
||||
return {
|
||||
recognition: config.face_recognition.recognition_threshold,
|
||||
unknown: config.face_recognition.unknown_score,
|
||||
};
|
||||
}, [config]);
|
||||
|
||||
// interaction
|
||||
|
||||
@ -799,144 +801,10 @@ function FaceAttemptGroup({
|
||||
[event, group, selectedFaces, onClickFaces, onSelectEvent],
|
||||
);
|
||||
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card p-2 outline outline-[3px]",
|
||||
isMobile && "w-full",
|
||||
allFacesSelected
|
||||
? "shadow-selected outline-selected"
|
||||
: "outline-transparent duration-500",
|
||||
)}
|
||||
onClick={() => {
|
||||
if (selectedFaces.length) {
|
||||
handleClickEvent(true);
|
||||
}
|
||||
}}
|
||||
onContextMenu={(e) => {
|
||||
e.stopPropagation();
|
||||
e.preventDefault();
|
||||
handleClickEvent(true);
|
||||
}}
|
||||
>
|
||||
<div className="flex flex-row justify-between">
|
||||
<div className="flex flex-col gap-1">
|
||||
<div className="select-none smart-capitalize">
|
||||
{t("details.person")}
|
||||
{event?.sub_label
|
||||
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
|
||||
: ": " + t("details.unknown")}
|
||||
</div>
|
||||
<TimeAgo
|
||||
className="text-sm text-secondary-foreground"
|
||||
time={group[0].timestamp * 1000}
|
||||
dense
|
||||
/>
|
||||
</div>
|
||||
{event && (
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<div
|
||||
className="cursor-pointer"
|
||||
onClick={() => {
|
||||
navigate(`/explore?event_id=${event.id}`);
|
||||
}}
|
||||
>
|
||||
<LuSearch className="size-4 text-muted-foreground" />
|
||||
</div>
|
||||
</TooltipTrigger>
|
||||
<TooltipPortal>
|
||||
<TooltipContent>
|
||||
{t("details.item.button.viewInExplore", {
|
||||
ns: "views/explore",
|
||||
})}
|
||||
</TooltipContent>
|
||||
</TooltipPortal>
|
||||
</Tooltip>
|
||||
)}
|
||||
</div>
|
||||
|
||||
<div
|
||||
className={cn(
|
||||
"gap-2",
|
||||
isDesktop
|
||||
? "flex flex-row flex-wrap"
|
||||
: "grid grid-cols-2 sm:grid-cols-5 lg:grid-cols-6",
|
||||
)}
|
||||
>
|
||||
{group.map((data: RecognizedFaceData) => (
|
||||
<FaceAttempt
|
||||
key={data.filename}
|
||||
data={data}
|
||||
faceNames={faceNames}
|
||||
recognitionConfig={config.face_recognition}
|
||||
selected={
|
||||
allFacesSelected ? false : selectedFaces.includes(data.filename)
|
||||
}
|
||||
onClick={(data, meta) => {
|
||||
if (meta || selectedFaces.length > 0) {
|
||||
onClickFaces([data.filename], true);
|
||||
} else if (event) {
|
||||
onSelectEvent(event);
|
||||
}
|
||||
}}
|
||||
onRefresh={onRefresh}
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
type FaceAttemptProps = {
|
||||
data: RecognizedFaceData;
|
||||
faceNames: string[];
|
||||
recognitionConfig: FaceRecognitionConfig;
|
||||
selected: boolean;
|
||||
onClick: (data: RecognizedFaceData, meta: boolean) => void;
|
||||
onRefresh: () => void;
|
||||
};
|
||||
function FaceAttempt({
|
||||
data,
|
||||
faceNames,
|
||||
recognitionConfig,
|
||||
selected,
|
||||
onClick,
|
||||
onRefresh,
|
||||
}: FaceAttemptProps) {
|
||||
const { t } = useTranslation(["views/faceLibrary"]);
|
||||
const [imageLoaded, setImageLoaded] = useState(false);
|
||||
|
||||
const scoreStatus = useMemo(() => {
|
||||
if (data.score >= recognitionConfig.recognition_threshold) {
|
||||
return "match";
|
||||
} else if (data.score >= recognitionConfig.unknown_score) {
|
||||
return "potential";
|
||||
} else {
|
||||
return "unknown";
|
||||
}
|
||||
}, [data, recognitionConfig]);
|
||||
|
||||
// interaction
|
||||
|
||||
const imgRef = useRef<HTMLImageElement | null>(null);
|
||||
|
||||
useContextMenu(imgRef, () => {
|
||||
onClick(data, true);
|
||||
});
|
||||
|
||||
const imageArea = useMemo(() => {
|
||||
if (imgRef.current == null || !imageLoaded) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
return imgRef.current.naturalWidth * imgRef.current.naturalHeight;
|
||||
}, [imageLoaded]);
|
||||
|
||||
// api calls
|
||||
|
||||
const onTrainAttempt = useCallback(
|
||||
(trainName: string) => {
|
||||
(data: ClassificationItemData, trainName: string) => {
|
||||
axios
|
||||
.post(`/faces/train/${trainName}/classify`, {
|
||||
training_file: data.filename,
|
||||
@ -959,96 +827,74 @@ function FaceAttempt({
|
||||
});
|
||||
});
|
||||
},
|
||||
[data, onRefresh, t],
|
||||
[onRefresh, t],
|
||||
);
|
||||
|
||||
const onReprocess = useCallback(() => {
|
||||
axios
|
||||
.post(`/faces/reprocess`, { training_file: data.filename })
|
||||
.then((resp) => {
|
||||
if (resp.status == 200) {
|
||||
toast.success(t("toast.success.updatedFaceScore"), {
|
||||
position: "top-center",
|
||||
});
|
||||
onRefresh();
|
||||
}
|
||||
})
|
||||
.catch((error) => {
|
||||
const errorMessage =
|
||||
error.response?.data?.message ||
|
||||
error.response?.data?.detail ||
|
||||
"Unknown error";
|
||||
toast.error(t("toast.error.updateFaceScoreFailed", { errorMessage }), {
|
||||
position: "top-center",
|
||||
const onReprocess = useCallback(
|
||||
(data: ClassificationItemData) => {
|
||||
axios
|
||||
.post(`/faces/reprocess`, { training_file: data.filename })
|
||||
.then((resp) => {
|
||||
if (resp.status == 200) {
|
||||
toast.success(t("toast.success.updatedFaceScore"), {
|
||||
position: "top-center",
|
||||
});
|
||||
onRefresh();
|
||||
}
|
||||
})
|
||||
.catch((error) => {
|
||||
const errorMessage =
|
||||
error.response?.data?.message ||
|
||||
error.response?.data?.detail ||
|
||||
"Unknown error";
|
||||
toast.error(
|
||||
t("toast.error.updateFaceScoreFailed", { errorMessage }),
|
||||
{
|
||||
position: "top-center",
|
||||
},
|
||||
);
|
||||
});
|
||||
});
|
||||
}, [data, onRefresh, t]);
|
||||
},
|
||||
[onRefresh, t],
|
||||
);
|
||||
|
||||
return (
|
||||
<>
|
||||
<div
|
||||
className={cn(
|
||||
"relative flex cursor-pointer flex-col rounded-lg outline outline-[3px]",
|
||||
selected
|
||||
? "shadow-selected outline-selected"
|
||||
: "outline-transparent duration-500",
|
||||
)}
|
||||
>
|
||||
<div className="relative w-full select-none overflow-hidden rounded-lg">
|
||||
<img
|
||||
ref={imgRef}
|
||||
onLoad={() => setImageLoaded(true)}
|
||||
className={cn("size-44", isMobile && "w-full")}
|
||||
src={`${baseUrl}clips/faces/train/${data.filename}`}
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onClick(data, e.metaKey || e.ctrlKey);
|
||||
}}
|
||||
/>
|
||||
{imageArea != undefined && (
|
||||
<div className="absolute bottom-1 right-1 z-10 rounded-lg bg-black/50 px-2 py-1 text-xs text-white">
|
||||
{t("pixels", { area: imageArea })}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
<div className="select-none p-2">
|
||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
||||
<div className="flex flex-col items-start text-xs text-primary-variant">
|
||||
<div className="smart-capitalize">
|
||||
{data.name == "unknown" ? t("details.unknown") : data.name}
|
||||
</div>
|
||||
<div
|
||||
className={cn(
|
||||
"",
|
||||
scoreStatus == "match" && "text-success",
|
||||
scoreStatus == "potential" && "text-orange-400",
|
||||
scoreStatus == "unknown" && "text-danger",
|
||||
)}
|
||||
>
|
||||
{Math.round(data.score * 100)}%
|
||||
</div>
|
||||
</div>
|
||||
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
|
||||
<FaceSelectionDialog
|
||||
faceNames={faceNames}
|
||||
onTrainAttempt={onTrainAttempt}
|
||||
>
|
||||
<AddFaceIcon className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
||||
</FaceSelectionDialog>
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<LuRefreshCw
|
||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||
onClick={() => onReprocess()}
|
||||
/>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>{t("button.reprocessFace")}</TooltipContent>
|
||||
</Tooltip>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</>
|
||||
<GroupedClassificationCard
|
||||
group={group}
|
||||
event={event}
|
||||
threshold={threshold}
|
||||
selectedItems={selectedFaces}
|
||||
i18nLibrary="views/faceLibrary"
|
||||
objectType="person"
|
||||
onClick={(data) => {
|
||||
if (data) {
|
||||
onClickFaces([data.filename], true);
|
||||
} else {
|
||||
handleClickEvent(true);
|
||||
}
|
||||
}}
|
||||
onSelectEvent={onSelectEvent}
|
||||
>
|
||||
{(data) => (
|
||||
<>
|
||||
<FaceSelectionDialog
|
||||
faceNames={faceNames}
|
||||
onTrainAttempt={(name) => onTrainAttempt(data, name)}
|
||||
>
|
||||
<AddFaceIcon className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
||||
</FaceSelectionDialog>
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<LuRefreshCw
|
||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||
onClick={() => onReprocess(data)}
|
||||
/>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>{t("button.reprocessFace")}</TooltipContent>
|
||||
</Tooltip>
|
||||
</>
|
||||
)}
|
||||
</GroupedClassificationCard>
|
||||
);
|
||||
}
|
||||
|
||||
@ -1093,80 +939,32 @@ function FaceGrid({
|
||||
)}
|
||||
>
|
||||
{sortedFaces.map((image: string) => (
|
||||
<FaceImage
|
||||
<ClassificationCard
|
||||
className="gap-2 rounded-lg bg-card p-2"
|
||||
key={image}
|
||||
name={pageToggle}
|
||||
image={image}
|
||||
data={{
|
||||
name: pageToggle,
|
||||
filename: image,
|
||||
filepath: `clips/faces/${pageToggle}/${image}`,
|
||||
}}
|
||||
selected={selectedFaces.includes(image)}
|
||||
onClickFaces={onClickFaces}
|
||||
onDelete={onDelete}
|
||||
/>
|
||||
i18nLibrary="views/faceLibrary"
|
||||
onClick={(data, meta) => onClickFaces([data.filename], meta)}
|
||||
>
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<LuTrash2
|
||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onDelete(pageToggle, [image]);
|
||||
}}
|
||||
/>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>{t("button.deleteFaceAttempts")}</TooltipContent>
|
||||
</Tooltip>
|
||||
</ClassificationCard>
|
||||
))}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
type FaceImageProps = {
|
||||
name: string;
|
||||
image: string;
|
||||
selected: boolean;
|
||||
onClickFaces: (images: string[], ctrl: boolean) => void;
|
||||
onDelete: (name: string, ids: string[]) => void;
|
||||
};
|
||||
function FaceImage({
|
||||
name,
|
||||
image,
|
||||
selected,
|
||||
onClickFaces,
|
||||
onDelete,
|
||||
}: FaceImageProps) {
|
||||
const { t } = useTranslation(["views/faceLibrary"]);
|
||||
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
|
||||
selected
|
||||
? "shadow-selected outline-selected"
|
||||
: "outline-transparent duration-500",
|
||||
)}
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onClickFaces([image], e.ctrlKey || e.metaKey);
|
||||
}}
|
||||
>
|
||||
<div
|
||||
className={cn(
|
||||
"w-full overflow-hidden p-2 *:text-card-foreground",
|
||||
isMobile && "flex justify-center",
|
||||
)}
|
||||
>
|
||||
<img
|
||||
className="h-40 rounded-lg"
|
||||
src={`${baseUrl}clips/faces/${name}/${image}`}
|
||||
/>
|
||||
</div>
|
||||
<div className="rounded-b-lg bg-card p-3">
|
||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
||||
<div className="flex flex-col items-start text-xs text-primary-variant">
|
||||
<div className="smart-capitalize">{name}</div>
|
||||
</div>
|
||||
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<LuTrash2
|
||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onDelete(name, [image]);
|
||||
}}
|
||||
/>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>{t("button.deleteFaceAttempts")}</TooltipContent>
|
||||
</Tooltip>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
@ -6,3 +6,17 @@ export type TrainFilter = {
|
||||
min_score?: number;
|
||||
max_score?: number;
|
||||
};
|
||||
|
||||
export type ClassificationItemData = {
|
||||
filepath: string;
|
||||
filename: string;
|
||||
name: string;
|
||||
timestamp?: number;
|
||||
eventId?: string;
|
||||
score?: number;
|
||||
};
|
||||
|
||||
export type ClassificationThreshold = {
|
||||
recognition: number;
|
||||
unknown: number;
|
||||
};
|
||||
|
||||
@ -1,11 +1,3 @@
|
||||
export type FaceLibraryData = {
|
||||
[faceName: string]: string[];
|
||||
};
|
||||
|
||||
export type RecognizedFaceData = {
|
||||
filename: string;
|
||||
timestamp: number;
|
||||
eventId: string;
|
||||
name: string;
|
||||
score: number;
|
||||
};
|
||||
|
||||
@ -38,7 +38,11 @@ export default function ModelSelectionView({
|
||||
return (
|
||||
<div className="flex size-full gap-2 p-2">
|
||||
{classificationConfigs.map((config) => (
|
||||
<ModelCard config={config} onClick={() => onClick(config)} />
|
||||
<ModelCard
|
||||
key={config.name}
|
||||
config={config}
|
||||
onClick={() => onClick(config)}
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
);
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
import { baseUrl } from "@/api/baseUrl";
|
||||
import TextEntryDialog from "@/components/overlay/dialog/TextEntryDialog";
|
||||
import { Button, buttonVariants } from "@/components/ui/button";
|
||||
import {
|
||||
@ -60,7 +59,16 @@ import { IoMdArrowRoundBack } from "react-icons/io";
|
||||
import { MdAutoFixHigh } from "react-icons/md";
|
||||
import TrainFilterDialog from "@/components/overlay/dialog/TrainFilterDialog";
|
||||
import useApiFilter from "@/hooks/use-api-filter";
|
||||
import { TrainFilter } from "@/types/classification";
|
||||
import { ClassificationItemData, TrainFilter } from "@/types/classification";
|
||||
import {
|
||||
ClassificationCard,
|
||||
GroupedClassificationCard,
|
||||
} from "@/components/card/ClassificationCard";
|
||||
import { Event } from "@/types/event";
|
||||
import SearchDetailDialog, {
|
||||
SearchTab,
|
||||
} from "@/components/overlay/detail/SearchDetailDialog";
|
||||
import { SearchResult } from "@/types/search";
|
||||
|
||||
type ModelTrainingViewProps = {
|
||||
model: CustomClassificationModelConfig;
|
||||
@ -626,53 +634,34 @@ function DatasetGrid({
|
||||
className="scrollbar-container flex flex-wrap gap-2 overflow-y-auto p-2"
|
||||
>
|
||||
{classData.map((image) => (
|
||||
<div
|
||||
className={cn(
|
||||
"flex w-60 cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
|
||||
selectedImages.includes(image)
|
||||
? "shadow-selected outline-selected"
|
||||
: "outline-transparent duration-500",
|
||||
)}
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
|
||||
if (e.ctrlKey || e.metaKey) {
|
||||
onClickImages([image], true);
|
||||
}
|
||||
<ClassificationCard
|
||||
key={image}
|
||||
className="w-60 gap-4 rounded-lg bg-card p-2"
|
||||
imgClassName="size-auto"
|
||||
data={{
|
||||
filename: image,
|
||||
filepath: `clips/${modelName}/dataset/${categoryName}/${image}`,
|
||||
name: "",
|
||||
}}
|
||||
selected={selectedImages.includes(image)}
|
||||
i18nLibrary="views/classificationModel"
|
||||
onClick={(data, _) => onClickImages([data.filename], true)}
|
||||
>
|
||||
<div
|
||||
className={cn(
|
||||
"w-full overflow-hidden p-2 *:text-card-foreground",
|
||||
isMobile && "flex justify-center",
|
||||
)}
|
||||
>
|
||||
<img
|
||||
className="rounded-lg"
|
||||
src={`${baseUrl}clips/${modelName}/dataset/${categoryName}/${image}`}
|
||||
/>
|
||||
</div>
|
||||
<div className="rounded-b-lg bg-card p-3">
|
||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
||||
<div className="flex w-full flex-row items-start justify-end gap-5 md:gap-4">
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<LuTrash2
|
||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onDelete([image]);
|
||||
}}
|
||||
/>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
{t("button.deleteClassificationAttempts")}
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<LuTrash2
|
||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onDelete([image]);
|
||||
}}
|
||||
/>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
{t("button.deleteClassificationAttempts")}
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
</ClassificationCard>
|
||||
))}
|
||||
</div>
|
||||
);
|
||||
@ -700,20 +689,19 @@ function TrainGrid({
|
||||
onRefresh,
|
||||
onDelete,
|
||||
}: TrainGridProps) {
|
||||
const { t } = useTranslation(["views/classificationModel"]);
|
||||
|
||||
const trainData = useMemo(
|
||||
const trainData = useMemo<ClassificationItemData[]>(
|
||||
() =>
|
||||
trainImages
|
||||
.map((raw) => {
|
||||
const parts = raw.replaceAll(".webp", "").split("-");
|
||||
const rawScore = Number.parseFloat(parts[2]);
|
||||
const rawScore = Number.parseFloat(parts[4]);
|
||||
return {
|
||||
raw,
|
||||
timestamp: parts[0],
|
||||
label: parts[1],
|
||||
score: rawScore * 100,
|
||||
truePositive: rawScore >= model.threshold,
|
||||
filename: raw,
|
||||
filepath: `clips/${model.name}/train/${raw}`,
|
||||
timestamp: Number.parseFloat(parts[2]),
|
||||
eventId: `${parts[0]}-${parts[1]}`,
|
||||
name: parts[3],
|
||||
score: rawScore,
|
||||
};
|
||||
})
|
||||
.filter((data) => {
|
||||
@ -721,10 +709,7 @@ function TrainGrid({
|
||||
return true;
|
||||
}
|
||||
|
||||
if (
|
||||
trainFilter.classes &&
|
||||
!trainFilter.classes.includes(data.label)
|
||||
) {
|
||||
if (trainFilter.classes && !trainFilter.classes.includes(data.name)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -744,10 +729,68 @@ function TrainGrid({
|
||||
|
||||
return true;
|
||||
})
|
||||
.sort((a, b) => b.timestamp.localeCompare(a.timestamp)),
|
||||
.sort((a, b) => b.timestamp - a.timestamp),
|
||||
[model, trainImages, trainFilter],
|
||||
);
|
||||
|
||||
if (model.state_config) {
|
||||
return (
|
||||
<StateTrainGrid
|
||||
model={model}
|
||||
contentRef={contentRef}
|
||||
classes={classes}
|
||||
trainData={trainData}
|
||||
selectedImages={selectedImages}
|
||||
onClickImages={onClickImages}
|
||||
onRefresh={onRefresh}
|
||||
onDelete={onDelete}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<ObjectTrainGrid
|
||||
model={model}
|
||||
contentRef={contentRef}
|
||||
classes={classes}
|
||||
trainData={trainData}
|
||||
selectedImages={selectedImages}
|
||||
onClickImages={onClickImages}
|
||||
onRefresh={onRefresh}
|
||||
onDelete={onDelete}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
type StateTrainGridProps = {
|
||||
model: CustomClassificationModelConfig;
|
||||
contentRef: MutableRefObject<HTMLDivElement | null>;
|
||||
classes: string[];
|
||||
trainData?: ClassificationItemData[];
|
||||
selectedImages: string[];
|
||||
onClickImages: (images: string[], ctrl: boolean) => void;
|
||||
onRefresh: () => void;
|
||||
onDelete: (ids: string[]) => void;
|
||||
};
|
||||
function StateTrainGrid({
|
||||
model,
|
||||
contentRef,
|
||||
classes,
|
||||
trainData,
|
||||
selectedImages,
|
||||
onClickImages,
|
||||
onRefresh,
|
||||
onDelete,
|
||||
}: StateTrainGridProps) {
|
||||
const { t } = useTranslation(["views/classificationModel"]);
|
||||
|
||||
const threshold = useMemo(() => {
|
||||
return {
|
||||
recognition: model.threshold,
|
||||
unknown: model.threshold,
|
||||
};
|
||||
}, [model]);
|
||||
|
||||
return (
|
||||
<div
|
||||
ref={contentRef}
|
||||
@ -757,74 +800,208 @@ function TrainGrid({
|
||||
)}
|
||||
>
|
||||
{trainData?.map((data) => (
|
||||
<div
|
||||
key={data.timestamp}
|
||||
className={cn(
|
||||
"flex w-56 cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
|
||||
selectedImages.includes(data.raw)
|
||||
? "shadow-selected outline-selected"
|
||||
: "outline-transparent duration-500",
|
||||
isMobile && "w-[48%]",
|
||||
)}
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onClickImages([data.raw], e.ctrlKey || e.metaKey);
|
||||
}}
|
||||
<ClassificationCard
|
||||
key={data.filename}
|
||||
className="w-60 gap-2 rounded-lg bg-card p-2"
|
||||
imgClassName="size-auto"
|
||||
data={data}
|
||||
threshold={threshold}
|
||||
selected={selectedImages.includes(data.filename)}
|
||||
i18nLibrary="views/classificationModel"
|
||||
showArea={false}
|
||||
onClick={(data, meta) => onClickImages([data.filename], meta)}
|
||||
>
|
||||
<div
|
||||
className={cn(
|
||||
"w-full overflow-hidden p-2 *:text-card-foreground",
|
||||
isMobile && "flex justify-center",
|
||||
)}
|
||||
<ClassificationSelectionDialog
|
||||
classes={classes}
|
||||
modelName={model.name}
|
||||
image={data.filename}
|
||||
onRefresh={onRefresh}
|
||||
>
|
||||
<img
|
||||
className="w-56 rounded-lg"
|
||||
src={`${baseUrl}clips/${model.name}/train/${data.raw}`}
|
||||
/>
|
||||
</div>
|
||||
<div className="rounded-b-lg bg-card p-3">
|
||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
||||
<div className="flex flex-col items-start text-xs text-primary-variant">
|
||||
<div className="smart-capitalize">
|
||||
{data.label.replaceAll("_", " ")}
|
||||
</div>
|
||||
<div
|
||||
className={cn(
|
||||
"",
|
||||
data.truePositive ? "text-success" : "text-danger",
|
||||
)}
|
||||
>
|
||||
{data.score}%
|
||||
</div>
|
||||
</div>
|
||||
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
|
||||
<ClassificationSelectionDialog
|
||||
classes={classes}
|
||||
modelName={model.name}
|
||||
image={data.raw}
|
||||
onRefresh={onRefresh}
|
||||
>
|
||||
<TbCategoryPlus className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
||||
</ClassificationSelectionDialog>
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<LuTrash2
|
||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onDelete([data.raw]);
|
||||
}}
|
||||
/>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
{t("button.deleteClassificationAttempts")}
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<TbCategoryPlus className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
||||
</ClassificationSelectionDialog>
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<LuTrash2
|
||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onDelete([data.filename]);
|
||||
}}
|
||||
/>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
{t("button.deleteClassificationAttempts")}
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
</ClassificationCard>
|
||||
))}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
type ObjectTrainGridProps = {
|
||||
model: CustomClassificationModelConfig;
|
||||
contentRef: MutableRefObject<HTMLDivElement | null>;
|
||||
classes: string[];
|
||||
trainData?: ClassificationItemData[];
|
||||
selectedImages: string[];
|
||||
onClickImages: (images: string[], ctrl: boolean) => void;
|
||||
onRefresh: () => void;
|
||||
onDelete: (ids: string[]) => void;
|
||||
};
|
||||
function ObjectTrainGrid({
|
||||
model,
|
||||
contentRef,
|
||||
classes,
|
||||
trainData,
|
||||
selectedImages,
|
||||
onClickImages,
|
||||
onRefresh,
|
||||
onDelete,
|
||||
}: ObjectTrainGridProps) {
|
||||
const { t } = useTranslation(["views/classificationModel"]);
|
||||
|
||||
// item data
|
||||
|
||||
const groups = useMemo(() => {
|
||||
const groups: { [eventId: string]: ClassificationItemData[] } = {};
|
||||
|
||||
trainData
|
||||
?.sort((a, b) => a.eventId!.localeCompare(b.eventId!))
|
||||
.reverse()
|
||||
.forEach((data) => {
|
||||
if (groups[data.eventId!]) {
|
||||
groups[data.eventId!].push(data);
|
||||
} else {
|
||||
groups[data.eventId!] = [data];
|
||||
}
|
||||
});
|
||||
|
||||
return groups;
|
||||
}, [trainData]);
|
||||
|
||||
const eventIdsQuery = useMemo(() => Object.keys(groups).join(","), [groups]);
|
||||
|
||||
const { data: events } = useSWR<Event[]>([
|
||||
"event_ids",
|
||||
{ ids: eventIdsQuery },
|
||||
]);
|
||||
|
||||
const threshold = useMemo(() => {
|
||||
return {
|
||||
recognition: model.threshold,
|
||||
unknown: model.threshold,
|
||||
};
|
||||
}, [model]);
|
||||
|
||||
// selection
|
||||
|
||||
const [selectedEvent, setSelectedEvent] = useState<Event>();
|
||||
const [dialogTab, setDialogTab] = useState<SearchTab>("details");
|
||||
|
||||
// handlers
|
||||
|
||||
const handleClickEvent = useCallback(
|
||||
(
|
||||
group: ClassificationItemData[],
|
||||
event: Event | undefined,
|
||||
meta: boolean,
|
||||
) => {
|
||||
if (event && selectedImages.length == 0 && !meta) {
|
||||
setSelectedEvent(event);
|
||||
} else {
|
||||
const anySelected =
|
||||
group.find((item) => selectedImages.includes(item.filename)) !=
|
||||
undefined;
|
||||
|
||||
if (anySelected) {
|
||||
// deselect all
|
||||
const toDeselect: string[] = [];
|
||||
group.forEach((item) => {
|
||||
if (selectedImages.includes(item.filename)) {
|
||||
toDeselect.push(item.filename);
|
||||
}
|
||||
});
|
||||
onClickImages(toDeselect, false);
|
||||
} else {
|
||||
// select all
|
||||
onClickImages(
|
||||
group.map((item) => item.filename),
|
||||
true,
|
||||
);
|
||||
}
|
||||
}
|
||||
},
|
||||
[selectedImages, onClickImages],
|
||||
);
|
||||
|
||||
return (
|
||||
<>
|
||||
<SearchDetailDialog
|
||||
search={
|
||||
selectedEvent ? (selectedEvent as unknown as SearchResult) : undefined
|
||||
}
|
||||
page={dialogTab}
|
||||
setSimilarity={undefined}
|
||||
setSearchPage={setDialogTab}
|
||||
setSearch={(search) => setSelectedEvent(search as unknown as Event)}
|
||||
setInputFocused={() => {}}
|
||||
/>
|
||||
|
||||
<div
|
||||
ref={contentRef}
|
||||
className="scrollbar-container flex flex-wrap gap-2 overflow-y-scroll p-1"
|
||||
>
|
||||
{Object.entries(groups).map(([key, group]) => {
|
||||
const event = events?.find((ev) => ev.id == key);
|
||||
return (
|
||||
<GroupedClassificationCard
|
||||
key={key}
|
||||
group={group}
|
||||
event={event}
|
||||
threshold={threshold}
|
||||
selectedItems={selectedImages}
|
||||
i18nLibrary="views/classificationModel"
|
||||
objectType={model.object_config?.objects?.at(0) ?? "Object"}
|
||||
onClick={(data) => {
|
||||
if (data) {
|
||||
onClickImages([data.filename], true);
|
||||
} else {
|
||||
handleClickEvent(group, event, true);
|
||||
}
|
||||
}}
|
||||
onSelectEvent={() => {}}
|
||||
>
|
||||
{(data) => (
|
||||
<>
|
||||
<ClassificationSelectionDialog
|
||||
classes={classes}
|
||||
modelName={model.name}
|
||||
image={data.filename}
|
||||
onRefresh={onRefresh}
|
||||
>
|
||||
<TbCategoryPlus className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
||||
</ClassificationSelectionDialog>
|
||||
<Tooltip>
|
||||
<TooltipTrigger>
|
||||
<LuTrash2
|
||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||
onClick={(e) => {
|
||||
e.stopPropagation();
|
||||
onDelete([data.filename]);
|
||||
}}
|
||||
/>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
{t("button.deleteClassificationAttempts")}
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
</>
|
||||
)}
|
||||
</GroupedClassificationCard>
|
||||
);
|
||||
})}
|
||||
</div>
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user