mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 21:44:13 +03:00
Generic classification card (#20379)
* Refactor face card into generic classification card * Update classification data card to use classification card * Refactor state training grid to use classification card * Refactor grouped face card into generic component * Combine classification objects by event * Fixup * Cleanup * Cleanup * Do not fail if a single event is not found * Save original frame * Cleanup * Undo
This commit is contained in:
parent
4bea69591b
commit
37afd5da6b
@ -434,10 +434,8 @@ async def event_ids(ids: str, request: Request):
|
|||||||
event = Event.get(Event.id == event_id)
|
event = Event.get(Event.id == event_id)
|
||||||
await require_camera_access(event.camera, request=request)
|
await require_camera_access(event.camera, request=request)
|
||||||
except DoesNotExist:
|
except DoesNotExist:
|
||||||
return JSONResponse(
|
# we should not fail the entire request if an event is not found
|
||||||
content=({"success": False, "message": f"Event {event_id} not found"}),
|
continue
|
||||||
status_code=404,
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
events = Event.select().where(Event.id << ids).dicts().iterator()
|
events = Event.select().where(Event.id << ids).dicts().iterator()
|
||||||
|
|||||||
@ -142,7 +142,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
|||||||
|
|
||||||
if frame.shape != (224, 224):
|
if frame.shape != (224, 224):
|
||||||
try:
|
try:
|
||||||
frame = cv2.resize(frame, (224, 224))
|
resized_frame = cv2.resize(frame, (224, 224))
|
||||||
except Exception:
|
except Exception:
|
||||||
logger.warning("Failed to resize image for state classification")
|
logger.warning("Failed to resize image for state classification")
|
||||||
return
|
return
|
||||||
@ -151,13 +151,14 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
|||||||
write_classification_attempt(
|
write_classification_attempt(
|
||||||
self.train_dir,
|
self.train_dir,
|
||||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||||
|
"none-none",
|
||||||
now,
|
now,
|
||||||
"unknown",
|
"unknown",
|
||||||
0.0,
|
0.0,
|
||||||
)
|
)
|
||||||
return
|
return
|
||||||
|
|
||||||
input = np.expand_dims(frame, axis=0)
|
input = np.expand_dims(resized_frame, axis=0)
|
||||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
|
||||||
self.interpreter.invoke()
|
self.interpreter.invoke()
|
||||||
res: np.ndarray = self.interpreter.get_tensor(
|
res: np.ndarray = self.interpreter.get_tensor(
|
||||||
@ -171,6 +172,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
|||||||
write_classification_attempt(
|
write_classification_attempt(
|
||||||
self.train_dir,
|
self.train_dir,
|
||||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||||
|
"none-none",
|
||||||
now,
|
now,
|
||||||
self.labelmap[best_id],
|
self.labelmap[best_id],
|
||||||
score,
|
score,
|
||||||
@ -284,7 +286,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
|||||||
|
|
||||||
if crop.shape != (224, 224):
|
if crop.shape != (224, 224):
|
||||||
try:
|
try:
|
||||||
crop = cv2.resize(crop, (224, 224))
|
resized_crop = cv2.resize(crop, (224, 224))
|
||||||
except Exception:
|
except Exception:
|
||||||
logger.warning("Failed to resize image for state classification")
|
logger.warning("Failed to resize image for state classification")
|
||||||
return
|
return
|
||||||
@ -293,13 +295,14 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
|||||||
write_classification_attempt(
|
write_classification_attempt(
|
||||||
self.train_dir,
|
self.train_dir,
|
||||||
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
|
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
|
||||||
|
obj_data["id"],
|
||||||
now,
|
now,
|
||||||
"unknown",
|
"unknown",
|
||||||
0.0,
|
0.0,
|
||||||
)
|
)
|
||||||
return
|
return
|
||||||
|
|
||||||
input = np.expand_dims(crop, axis=0)
|
input = np.expand_dims(resized_crop, axis=0)
|
||||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
|
||||||
self.interpreter.invoke()
|
self.interpreter.invoke()
|
||||||
res: np.ndarray = self.interpreter.get_tensor(
|
res: np.ndarray = self.interpreter.get_tensor(
|
||||||
@ -314,6 +317,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
|||||||
write_classification_attempt(
|
write_classification_attempt(
|
||||||
self.train_dir,
|
self.train_dir,
|
||||||
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
|
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
|
||||||
|
obj_data["id"],
|
||||||
now,
|
now,
|
||||||
self.labelmap[best_id],
|
self.labelmap[best_id],
|
||||||
score,
|
score,
|
||||||
@ -372,6 +376,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
|||||||
def write_classification_attempt(
|
def write_classification_attempt(
|
||||||
folder: str,
|
folder: str,
|
||||||
frame: np.ndarray,
|
frame: np.ndarray,
|
||||||
|
event_id: str,
|
||||||
timestamp: float,
|
timestamp: float,
|
||||||
label: str,
|
label: str,
|
||||||
score: float,
|
score: float,
|
||||||
@ -379,7 +384,7 @@ def write_classification_attempt(
|
|||||||
if "-" in label:
|
if "-" in label:
|
||||||
label = label.replace("-", "_")
|
label = label.replace("-", "_")
|
||||||
|
|
||||||
file = os.path.join(folder, f"{timestamp}-{label}-{score}.webp")
|
file = os.path.join(folder, f"{event_id}-{timestamp}-{label}-{score}.webp")
|
||||||
os.makedirs(folder, exist_ok=True)
|
os.makedirs(folder, exist_ok=True)
|
||||||
cv2.imwrite(file, frame)
|
cv2.imwrite(file, frame)
|
||||||
|
|
||||||
|
|||||||
@ -263,5 +263,8 @@
|
|||||||
"desc": "Page not found"
|
"desc": "Page not found"
|
||||||
},
|
},
|
||||||
"selectItem": "Select {{item}}",
|
"selectItem": "Select {{item}}",
|
||||||
"readTheDocumentation": "Read the documentation"
|
"readTheDocumentation": "Read the documentation",
|
||||||
|
"information": {
|
||||||
|
"pixels": "{{area}}px"
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -5,7 +5,6 @@
|
|||||||
"invalidName": "Invalid name. Names can only include letters, numbers, spaces, apostrophes, underscores, and hyphens."
|
"invalidName": "Invalid name. Names can only include letters, numbers, spaces, apostrophes, underscores, and hyphens."
|
||||||
},
|
},
|
||||||
"details": {
|
"details": {
|
||||||
"person": "Person",
|
|
||||||
"subLabelScore": "Sub Label Score",
|
"subLabelScore": "Sub Label Score",
|
||||||
"scoreInfo": "The sub label score is the weighted score for all of the recognized face confidences, so this may differ from the score shown on the snapshot.",
|
"scoreInfo": "The sub label score is the weighted score for all of the recognized face confidences, so this may differ from the score shown on the snapshot.",
|
||||||
"face": "Face Details",
|
"face": "Face Details",
|
||||||
|
|||||||
263
web/src/components/card/ClassificationCard.tsx
Normal file
263
web/src/components/card/ClassificationCard.tsx
Normal file
@ -0,0 +1,263 @@
|
|||||||
|
import { baseUrl } from "@/api/baseUrl";
|
||||||
|
import useContextMenu from "@/hooks/use-contextmenu";
|
||||||
|
import { cn } from "@/lib/utils";
|
||||||
|
import {
|
||||||
|
ClassificationItemData,
|
||||||
|
ClassificationThreshold,
|
||||||
|
} from "@/types/classification";
|
||||||
|
import { Event } from "@/types/event";
|
||||||
|
import { useMemo, useRef, useState } from "react";
|
||||||
|
import { isDesktop, isMobile } from "react-device-detect";
|
||||||
|
import { useTranslation } from "react-i18next";
|
||||||
|
import TimeAgo from "../dynamic/TimeAgo";
|
||||||
|
import { Tooltip, TooltipContent, TooltipTrigger } from "../ui/tooltip";
|
||||||
|
import { LuSearch } from "react-icons/lu";
|
||||||
|
import { TooltipPortal } from "@radix-ui/react-tooltip";
|
||||||
|
import { useNavigate } from "react-router-dom";
|
||||||
|
import { getTranslatedLabel } from "@/utils/i18n";
|
||||||
|
|
||||||
|
type ClassificationCardProps = {
|
||||||
|
className?: string;
|
||||||
|
imgClassName?: string;
|
||||||
|
data: ClassificationItemData;
|
||||||
|
threshold?: ClassificationThreshold;
|
||||||
|
selected: boolean;
|
||||||
|
i18nLibrary: string;
|
||||||
|
showArea?: boolean;
|
||||||
|
onClick: (data: ClassificationItemData, meta: boolean) => void;
|
||||||
|
children?: React.ReactNode;
|
||||||
|
};
|
||||||
|
export function ClassificationCard({
|
||||||
|
className,
|
||||||
|
imgClassName,
|
||||||
|
data,
|
||||||
|
threshold,
|
||||||
|
selected,
|
||||||
|
i18nLibrary,
|
||||||
|
showArea = true,
|
||||||
|
onClick,
|
||||||
|
children,
|
||||||
|
}: ClassificationCardProps) {
|
||||||
|
const { t } = useTranslation([i18nLibrary]);
|
||||||
|
const [imageLoaded, setImageLoaded] = useState(false);
|
||||||
|
|
||||||
|
const scoreStatus = useMemo(() => {
|
||||||
|
if (!data.score || !threshold) {
|
||||||
|
return "unknown";
|
||||||
|
}
|
||||||
|
|
||||||
|
if (data.score >= threshold.recognition) {
|
||||||
|
return "match";
|
||||||
|
} else if (data.score >= threshold.unknown) {
|
||||||
|
return "potential";
|
||||||
|
} else {
|
||||||
|
return "unknown";
|
||||||
|
}
|
||||||
|
}, [data, threshold]);
|
||||||
|
|
||||||
|
// interaction
|
||||||
|
|
||||||
|
const imgRef = useRef<HTMLImageElement | null>(null);
|
||||||
|
|
||||||
|
useContextMenu(imgRef, () => {
|
||||||
|
onClick(data, true);
|
||||||
|
});
|
||||||
|
|
||||||
|
const imageArea = useMemo(() => {
|
||||||
|
if (!showArea || imgRef.current == null || !imageLoaded) {
|
||||||
|
return undefined;
|
||||||
|
}
|
||||||
|
|
||||||
|
return imgRef.current.naturalWidth * imgRef.current.naturalHeight;
|
||||||
|
}, [showArea, imageLoaded]);
|
||||||
|
|
||||||
|
return (
|
||||||
|
<>
|
||||||
|
<div
|
||||||
|
className={cn(
|
||||||
|
"relative flex cursor-pointer flex-col rounded-lg outline outline-[3px]",
|
||||||
|
className,
|
||||||
|
selected
|
||||||
|
? "shadow-selected outline-selected"
|
||||||
|
: "outline-transparent duration-500",
|
||||||
|
)}
|
||||||
|
>
|
||||||
|
<div className="relative w-full select-none overflow-hidden rounded-lg">
|
||||||
|
<img
|
||||||
|
ref={imgRef}
|
||||||
|
onLoad={() => setImageLoaded(true)}
|
||||||
|
className={cn("size-44", imgClassName, isMobile && "w-full")}
|
||||||
|
src={`${baseUrl}${data.filepath}`}
|
||||||
|
onClick={(e) => {
|
||||||
|
e.stopPropagation();
|
||||||
|
onClick(data, e.metaKey || e.ctrlKey);
|
||||||
|
}}
|
||||||
|
/>
|
||||||
|
{imageArea != undefined && (
|
||||||
|
<div className="absolute bottom-1 right-1 z-10 rounded-lg bg-black/50 px-2 py-1 text-xs text-white">
|
||||||
|
{t("information.pixels", { ns: "common", area: imageArea })}
|
||||||
|
</div>
|
||||||
|
)}
|
||||||
|
</div>
|
||||||
|
<div className="select-none p-2">
|
||||||
|
<div className="flex w-full flex-row items-center justify-between gap-2">
|
||||||
|
<div className="flex flex-col items-start text-xs text-primary-variant">
|
||||||
|
<div className="smart-capitalize">
|
||||||
|
{data.name == "unknown" ? t("details.unknown") : data.name}
|
||||||
|
</div>
|
||||||
|
{data.score && (
|
||||||
|
<div
|
||||||
|
className={cn(
|
||||||
|
"",
|
||||||
|
scoreStatus == "match" && "text-success",
|
||||||
|
scoreStatus == "potential" && "text-orange-400",
|
||||||
|
scoreStatus == "unknown" && "text-danger",
|
||||||
|
)}
|
||||||
|
>
|
||||||
|
{Math.round(data.score * 100)}%
|
||||||
|
</div>
|
||||||
|
)}
|
||||||
|
</div>
|
||||||
|
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
|
||||||
|
{children}
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</>
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
type GroupedClassificationCardProps = {
|
||||||
|
group: ClassificationItemData[];
|
||||||
|
event?: Event;
|
||||||
|
threshold?: ClassificationThreshold;
|
||||||
|
selectedItems: string[];
|
||||||
|
i18nLibrary: string;
|
||||||
|
objectType: string;
|
||||||
|
onClick: (data: ClassificationItemData | undefined) => void;
|
||||||
|
onSelectEvent: (event: Event) => void;
|
||||||
|
children?: (data: ClassificationItemData) => React.ReactNode;
|
||||||
|
};
|
||||||
|
export function GroupedClassificationCard({
|
||||||
|
group,
|
||||||
|
event,
|
||||||
|
threshold,
|
||||||
|
selectedItems,
|
||||||
|
i18nLibrary,
|
||||||
|
objectType,
|
||||||
|
onClick,
|
||||||
|
onSelectEvent,
|
||||||
|
children,
|
||||||
|
}: GroupedClassificationCardProps) {
|
||||||
|
const navigate = useNavigate();
|
||||||
|
const { t } = useTranslation(["views/explore", i18nLibrary]);
|
||||||
|
|
||||||
|
// data
|
||||||
|
|
||||||
|
const allItemsSelected = useMemo(
|
||||||
|
() => group.every((data) => selectedItems.includes(data.filename)),
|
||||||
|
[group, selectedItems],
|
||||||
|
);
|
||||||
|
|
||||||
|
const time = useMemo(() => {
|
||||||
|
const item = group[0];
|
||||||
|
|
||||||
|
if (!item?.timestamp) {
|
||||||
|
return undefined;
|
||||||
|
}
|
||||||
|
|
||||||
|
return item.timestamp * 1000;
|
||||||
|
}, [group]);
|
||||||
|
|
||||||
|
return (
|
||||||
|
<div
|
||||||
|
className={cn(
|
||||||
|
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card p-2 outline outline-[3px]",
|
||||||
|
isMobile && "w-full",
|
||||||
|
allItemsSelected
|
||||||
|
? "shadow-selected outline-selected"
|
||||||
|
: "outline-transparent duration-500",
|
||||||
|
)}
|
||||||
|
onClick={() => {
|
||||||
|
if (selectedItems.length) {
|
||||||
|
onClick(undefined);
|
||||||
|
}
|
||||||
|
}}
|
||||||
|
onContextMenu={(e) => {
|
||||||
|
e.stopPropagation();
|
||||||
|
e.preventDefault();
|
||||||
|
onClick(undefined);
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
<div className="flex flex-row justify-between">
|
||||||
|
<div className="flex flex-col gap-1">
|
||||||
|
<div className="select-none smart-capitalize">
|
||||||
|
{getTranslatedLabel(objectType)}
|
||||||
|
{event?.sub_label
|
||||||
|
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
|
||||||
|
: ": " + t("details.unknown")}
|
||||||
|
</div>
|
||||||
|
{time && (
|
||||||
|
<TimeAgo
|
||||||
|
className="text-sm text-secondary-foreground"
|
||||||
|
time={time}
|
||||||
|
dense
|
||||||
|
/>
|
||||||
|
)}
|
||||||
|
</div>
|
||||||
|
{event && (
|
||||||
|
<Tooltip>
|
||||||
|
<TooltipTrigger>
|
||||||
|
<div
|
||||||
|
className="cursor-pointer"
|
||||||
|
onClick={() => {
|
||||||
|
navigate(`/explore?event_id=${event.id}`);
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
<LuSearch className="size-4 text-muted-foreground" />
|
||||||
|
</div>
|
||||||
|
</TooltipTrigger>
|
||||||
|
<TooltipPortal>
|
||||||
|
<TooltipContent>
|
||||||
|
{t("details.item.button.viewInExplore", {
|
||||||
|
ns: "views/explore",
|
||||||
|
})}
|
||||||
|
</TooltipContent>
|
||||||
|
</TooltipPortal>
|
||||||
|
</Tooltip>
|
||||||
|
)}
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div
|
||||||
|
className={cn(
|
||||||
|
"gap-2",
|
||||||
|
isDesktop
|
||||||
|
? "flex flex-row flex-wrap"
|
||||||
|
: "grid grid-cols-2 sm:grid-cols-5 lg:grid-cols-6",
|
||||||
|
)}
|
||||||
|
>
|
||||||
|
{group.map((data: ClassificationItemData) => (
|
||||||
|
<ClassificationCard
|
||||||
|
key={data.filename}
|
||||||
|
data={data}
|
||||||
|
threshold={threshold}
|
||||||
|
selected={
|
||||||
|
allItemsSelected ? false : selectedItems.includes(data.filename)
|
||||||
|
}
|
||||||
|
i18nLibrary={i18nLibrary}
|
||||||
|
onClick={(data, meta) => {
|
||||||
|
if (meta || selectedItems.length > 0) {
|
||||||
|
onClick(data);
|
||||||
|
} else if (event) {
|
||||||
|
onSelectEvent(event);
|
||||||
|
}
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
{children?.(data)}
|
||||||
|
</ClassificationCard>
|
||||||
|
))}
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
);
|
||||||
|
}
|
||||||
@ -1,5 +1,3 @@
|
|||||||
import { baseUrl } from "@/api/baseUrl";
|
|
||||||
import TimeAgo from "@/components/dynamic/TimeAgo";
|
|
||||||
import AddFaceIcon from "@/components/icons/AddFaceIcon";
|
import AddFaceIcon from "@/components/icons/AddFaceIcon";
|
||||||
import ActivityIndicator from "@/components/indicators/activity-indicator";
|
import ActivityIndicator from "@/components/indicators/activity-indicator";
|
||||||
import CreateFaceWizardDialog from "@/components/overlay/detail/FaceCreateWizardDialog";
|
import CreateFaceWizardDialog from "@/components/overlay/detail/FaceCreateWizardDialog";
|
||||||
@ -37,13 +35,12 @@ import {
|
|||||||
TooltipContent,
|
TooltipContent,
|
||||||
TooltipTrigger,
|
TooltipTrigger,
|
||||||
} from "@/components/ui/tooltip";
|
} from "@/components/ui/tooltip";
|
||||||
import useContextMenu from "@/hooks/use-contextmenu";
|
|
||||||
import useKeyboardListener from "@/hooks/use-keyboard-listener";
|
import useKeyboardListener from "@/hooks/use-keyboard-listener";
|
||||||
import useOptimisticState from "@/hooks/use-optimistic-state";
|
import useOptimisticState from "@/hooks/use-optimistic-state";
|
||||||
import { cn } from "@/lib/utils";
|
import { cn } from "@/lib/utils";
|
||||||
import { Event } from "@/types/event";
|
import { Event } from "@/types/event";
|
||||||
import { FaceLibraryData, RecognizedFaceData } from "@/types/face";
|
import { FaceLibraryData } from "@/types/face";
|
||||||
import { FaceRecognitionConfig, FrigateConfig } from "@/types/frigateConfig";
|
import { FrigateConfig } from "@/types/frigateConfig";
|
||||||
import { TooltipPortal } from "@radix-ui/react-tooltip";
|
import { TooltipPortal } from "@radix-ui/react-tooltip";
|
||||||
import axios from "axios";
|
import axios from "axios";
|
||||||
import {
|
import {
|
||||||
@ -54,7 +51,7 @@ import {
|
|||||||
useRef,
|
useRef,
|
||||||
useState,
|
useState,
|
||||||
} from "react";
|
} from "react";
|
||||||
import { isDesktop, isMobile } from "react-device-detect";
|
import { isDesktop } from "react-device-detect";
|
||||||
import { Trans, useTranslation } from "react-i18next";
|
import { Trans, useTranslation } from "react-i18next";
|
||||||
import {
|
import {
|
||||||
LuFolderCheck,
|
LuFolderCheck,
|
||||||
@ -62,16 +59,19 @@ import {
|
|||||||
LuPencil,
|
LuPencil,
|
||||||
LuRefreshCw,
|
LuRefreshCw,
|
||||||
LuScanFace,
|
LuScanFace,
|
||||||
LuSearch,
|
|
||||||
LuTrash2,
|
LuTrash2,
|
||||||
} from "react-icons/lu";
|
} from "react-icons/lu";
|
||||||
import { useNavigate } from "react-router-dom";
|
|
||||||
import { toast } from "sonner";
|
import { toast } from "sonner";
|
||||||
import useSWR from "swr";
|
import useSWR from "swr";
|
||||||
import SearchDetailDialog, {
|
import SearchDetailDialog, {
|
||||||
SearchTab,
|
SearchTab,
|
||||||
} from "@/components/overlay/detail/SearchDetailDialog";
|
} from "@/components/overlay/detail/SearchDetailDialog";
|
||||||
import { SearchResult } from "@/types/search";
|
import { SearchResult } from "@/types/search";
|
||||||
|
import {
|
||||||
|
ClassificationCard,
|
||||||
|
GroupedClassificationCard,
|
||||||
|
} from "@/components/card/ClassificationCard";
|
||||||
|
import { ClassificationItemData } from "@/types/classification";
|
||||||
|
|
||||||
export default function FaceLibrary() {
|
export default function FaceLibrary() {
|
||||||
const { t } = useTranslation(["views/faceLibrary"]);
|
const { t } = useTranslation(["views/faceLibrary"]);
|
||||||
@ -641,7 +641,7 @@ function TrainingGrid({
|
|||||||
// face data
|
// face data
|
||||||
|
|
||||||
const faceGroups = useMemo(() => {
|
const faceGroups = useMemo(() => {
|
||||||
const groups: { [eventId: string]: RecognizedFaceData[] } = {};
|
const groups: { [eventId: string]: ClassificationItemData[] } = {};
|
||||||
|
|
||||||
const faces = attemptImages
|
const faces = attemptImages
|
||||||
.map((image) => {
|
.map((image) => {
|
||||||
@ -650,6 +650,7 @@ function TrainingGrid({
|
|||||||
try {
|
try {
|
||||||
return {
|
return {
|
||||||
filename: image,
|
filename: image,
|
||||||
|
filepath: `clips/faces/train/${image}`,
|
||||||
timestamp: Number.parseFloat(parts[2]),
|
timestamp: Number.parseFloat(parts[2]),
|
||||||
eventId: `${parts[0]}-${parts[1]}`,
|
eventId: `${parts[0]}-${parts[1]}`,
|
||||||
name: parts[3],
|
name: parts[3],
|
||||||
@ -739,7 +740,7 @@ function TrainingGrid({
|
|||||||
|
|
||||||
type FaceAttemptGroupProps = {
|
type FaceAttemptGroupProps = {
|
||||||
config: FrigateConfig;
|
config: FrigateConfig;
|
||||||
group: RecognizedFaceData[];
|
group: ClassificationItemData[];
|
||||||
event?: Event;
|
event?: Event;
|
||||||
faceNames: string[];
|
faceNames: string[];
|
||||||
selectedFaces: string[];
|
selectedFaces: string[];
|
||||||
@ -757,15 +758,16 @@ function FaceAttemptGroup({
|
|||||||
onSelectEvent,
|
onSelectEvent,
|
||||||
onRefresh,
|
onRefresh,
|
||||||
}: FaceAttemptGroupProps) {
|
}: FaceAttemptGroupProps) {
|
||||||
const navigate = useNavigate();
|
|
||||||
const { t } = useTranslation(["views/faceLibrary", "views/explore"]);
|
const { t } = useTranslation(["views/faceLibrary", "views/explore"]);
|
||||||
|
|
||||||
// data
|
// data
|
||||||
|
|
||||||
const allFacesSelected = useMemo(
|
const threshold = useMemo(() => {
|
||||||
() => group.every((face) => selectedFaces.includes(face.filename)),
|
return {
|
||||||
[group, selectedFaces],
|
recognition: config.face_recognition.recognition_threshold,
|
||||||
);
|
unknown: config.face_recognition.unknown_score,
|
||||||
|
};
|
||||||
|
}, [config]);
|
||||||
|
|
||||||
// interaction
|
// interaction
|
||||||
|
|
||||||
@ -799,144 +801,10 @@ function FaceAttemptGroup({
|
|||||||
[event, group, selectedFaces, onClickFaces, onSelectEvent],
|
[event, group, selectedFaces, onClickFaces, onSelectEvent],
|
||||||
);
|
);
|
||||||
|
|
||||||
return (
|
|
||||||
<div
|
|
||||||
className={cn(
|
|
||||||
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card p-2 outline outline-[3px]",
|
|
||||||
isMobile && "w-full",
|
|
||||||
allFacesSelected
|
|
||||||
? "shadow-selected outline-selected"
|
|
||||||
: "outline-transparent duration-500",
|
|
||||||
)}
|
|
||||||
onClick={() => {
|
|
||||||
if (selectedFaces.length) {
|
|
||||||
handleClickEvent(true);
|
|
||||||
}
|
|
||||||
}}
|
|
||||||
onContextMenu={(e) => {
|
|
||||||
e.stopPropagation();
|
|
||||||
e.preventDefault();
|
|
||||||
handleClickEvent(true);
|
|
||||||
}}
|
|
||||||
>
|
|
||||||
<div className="flex flex-row justify-between">
|
|
||||||
<div className="flex flex-col gap-1">
|
|
||||||
<div className="select-none smart-capitalize">
|
|
||||||
{t("details.person")}
|
|
||||||
{event?.sub_label
|
|
||||||
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
|
|
||||||
: ": " + t("details.unknown")}
|
|
||||||
</div>
|
|
||||||
<TimeAgo
|
|
||||||
className="text-sm text-secondary-foreground"
|
|
||||||
time={group[0].timestamp * 1000}
|
|
||||||
dense
|
|
||||||
/>
|
|
||||||
</div>
|
|
||||||
{event && (
|
|
||||||
<Tooltip>
|
|
||||||
<TooltipTrigger>
|
|
||||||
<div
|
|
||||||
className="cursor-pointer"
|
|
||||||
onClick={() => {
|
|
||||||
navigate(`/explore?event_id=${event.id}`);
|
|
||||||
}}
|
|
||||||
>
|
|
||||||
<LuSearch className="size-4 text-muted-foreground" />
|
|
||||||
</div>
|
|
||||||
</TooltipTrigger>
|
|
||||||
<TooltipPortal>
|
|
||||||
<TooltipContent>
|
|
||||||
{t("details.item.button.viewInExplore", {
|
|
||||||
ns: "views/explore",
|
|
||||||
})}
|
|
||||||
</TooltipContent>
|
|
||||||
</TooltipPortal>
|
|
||||||
</Tooltip>
|
|
||||||
)}
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<div
|
|
||||||
className={cn(
|
|
||||||
"gap-2",
|
|
||||||
isDesktop
|
|
||||||
? "flex flex-row flex-wrap"
|
|
||||||
: "grid grid-cols-2 sm:grid-cols-5 lg:grid-cols-6",
|
|
||||||
)}
|
|
||||||
>
|
|
||||||
{group.map((data: RecognizedFaceData) => (
|
|
||||||
<FaceAttempt
|
|
||||||
key={data.filename}
|
|
||||||
data={data}
|
|
||||||
faceNames={faceNames}
|
|
||||||
recognitionConfig={config.face_recognition}
|
|
||||||
selected={
|
|
||||||
allFacesSelected ? false : selectedFaces.includes(data.filename)
|
|
||||||
}
|
|
||||||
onClick={(data, meta) => {
|
|
||||||
if (meta || selectedFaces.length > 0) {
|
|
||||||
onClickFaces([data.filename], true);
|
|
||||||
} else if (event) {
|
|
||||||
onSelectEvent(event);
|
|
||||||
}
|
|
||||||
}}
|
|
||||||
onRefresh={onRefresh}
|
|
||||||
/>
|
|
||||||
))}
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
type FaceAttemptProps = {
|
|
||||||
data: RecognizedFaceData;
|
|
||||||
faceNames: string[];
|
|
||||||
recognitionConfig: FaceRecognitionConfig;
|
|
||||||
selected: boolean;
|
|
||||||
onClick: (data: RecognizedFaceData, meta: boolean) => void;
|
|
||||||
onRefresh: () => void;
|
|
||||||
};
|
|
||||||
function FaceAttempt({
|
|
||||||
data,
|
|
||||||
faceNames,
|
|
||||||
recognitionConfig,
|
|
||||||
selected,
|
|
||||||
onClick,
|
|
||||||
onRefresh,
|
|
||||||
}: FaceAttemptProps) {
|
|
||||||
const { t } = useTranslation(["views/faceLibrary"]);
|
|
||||||
const [imageLoaded, setImageLoaded] = useState(false);
|
|
||||||
|
|
||||||
const scoreStatus = useMemo(() => {
|
|
||||||
if (data.score >= recognitionConfig.recognition_threshold) {
|
|
||||||
return "match";
|
|
||||||
} else if (data.score >= recognitionConfig.unknown_score) {
|
|
||||||
return "potential";
|
|
||||||
} else {
|
|
||||||
return "unknown";
|
|
||||||
}
|
|
||||||
}, [data, recognitionConfig]);
|
|
||||||
|
|
||||||
// interaction
|
|
||||||
|
|
||||||
const imgRef = useRef<HTMLImageElement | null>(null);
|
|
||||||
|
|
||||||
useContextMenu(imgRef, () => {
|
|
||||||
onClick(data, true);
|
|
||||||
});
|
|
||||||
|
|
||||||
const imageArea = useMemo(() => {
|
|
||||||
if (imgRef.current == null || !imageLoaded) {
|
|
||||||
return undefined;
|
|
||||||
}
|
|
||||||
|
|
||||||
return imgRef.current.naturalWidth * imgRef.current.naturalHeight;
|
|
||||||
}, [imageLoaded]);
|
|
||||||
|
|
||||||
// api calls
|
// api calls
|
||||||
|
|
||||||
const onTrainAttempt = useCallback(
|
const onTrainAttempt = useCallback(
|
||||||
(trainName: string) => {
|
(data: ClassificationItemData, trainName: string) => {
|
||||||
axios
|
axios
|
||||||
.post(`/faces/train/${trainName}/classify`, {
|
.post(`/faces/train/${trainName}/classify`, {
|
||||||
training_file: data.filename,
|
training_file: data.filename,
|
||||||
@ -959,96 +827,74 @@ function FaceAttempt({
|
|||||||
});
|
});
|
||||||
});
|
});
|
||||||
},
|
},
|
||||||
[data, onRefresh, t],
|
[onRefresh, t],
|
||||||
);
|
);
|
||||||
|
|
||||||
const onReprocess = useCallback(() => {
|
const onReprocess = useCallback(
|
||||||
axios
|
(data: ClassificationItemData) => {
|
||||||
.post(`/faces/reprocess`, { training_file: data.filename })
|
axios
|
||||||
.then((resp) => {
|
.post(`/faces/reprocess`, { training_file: data.filename })
|
||||||
if (resp.status == 200) {
|
.then((resp) => {
|
||||||
toast.success(t("toast.success.updatedFaceScore"), {
|
if (resp.status == 200) {
|
||||||
position: "top-center",
|
toast.success(t("toast.success.updatedFaceScore"), {
|
||||||
});
|
position: "top-center",
|
||||||
onRefresh();
|
});
|
||||||
}
|
onRefresh();
|
||||||
})
|
}
|
||||||
.catch((error) => {
|
})
|
||||||
const errorMessage =
|
.catch((error) => {
|
||||||
error.response?.data?.message ||
|
const errorMessage =
|
||||||
error.response?.data?.detail ||
|
error.response?.data?.message ||
|
||||||
"Unknown error";
|
error.response?.data?.detail ||
|
||||||
toast.error(t("toast.error.updateFaceScoreFailed", { errorMessage }), {
|
"Unknown error";
|
||||||
position: "top-center",
|
toast.error(
|
||||||
|
t("toast.error.updateFaceScoreFailed", { errorMessage }),
|
||||||
|
{
|
||||||
|
position: "top-center",
|
||||||
|
},
|
||||||
|
);
|
||||||
});
|
});
|
||||||
});
|
},
|
||||||
}, [data, onRefresh, t]);
|
[onRefresh, t],
|
||||||
|
);
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<>
|
<GroupedClassificationCard
|
||||||
<div
|
group={group}
|
||||||
className={cn(
|
event={event}
|
||||||
"relative flex cursor-pointer flex-col rounded-lg outline outline-[3px]",
|
threshold={threshold}
|
||||||
selected
|
selectedItems={selectedFaces}
|
||||||
? "shadow-selected outline-selected"
|
i18nLibrary="views/faceLibrary"
|
||||||
: "outline-transparent duration-500",
|
objectType="person"
|
||||||
)}
|
onClick={(data) => {
|
||||||
>
|
if (data) {
|
||||||
<div className="relative w-full select-none overflow-hidden rounded-lg">
|
onClickFaces([data.filename], true);
|
||||||
<img
|
} else {
|
||||||
ref={imgRef}
|
handleClickEvent(true);
|
||||||
onLoad={() => setImageLoaded(true)}
|
}
|
||||||
className={cn("size-44", isMobile && "w-full")}
|
}}
|
||||||
src={`${baseUrl}clips/faces/train/${data.filename}`}
|
onSelectEvent={onSelectEvent}
|
||||||
onClick={(e) => {
|
>
|
||||||
e.stopPropagation();
|
{(data) => (
|
||||||
onClick(data, e.metaKey || e.ctrlKey);
|
<>
|
||||||
}}
|
<FaceSelectionDialog
|
||||||
/>
|
faceNames={faceNames}
|
||||||
{imageArea != undefined && (
|
onTrainAttempt={(name) => onTrainAttempt(data, name)}
|
||||||
<div className="absolute bottom-1 right-1 z-10 rounded-lg bg-black/50 px-2 py-1 text-xs text-white">
|
>
|
||||||
{t("pixels", { area: imageArea })}
|
<AddFaceIcon className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
||||||
</div>
|
</FaceSelectionDialog>
|
||||||
)}
|
<Tooltip>
|
||||||
</div>
|
<TooltipTrigger>
|
||||||
<div className="select-none p-2">
|
<LuRefreshCw
|
||||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||||
<div className="flex flex-col items-start text-xs text-primary-variant">
|
onClick={() => onReprocess(data)}
|
||||||
<div className="smart-capitalize">
|
/>
|
||||||
{data.name == "unknown" ? t("details.unknown") : data.name}
|
</TooltipTrigger>
|
||||||
</div>
|
<TooltipContent>{t("button.reprocessFace")}</TooltipContent>
|
||||||
<div
|
</Tooltip>
|
||||||
className={cn(
|
</>
|
||||||
"",
|
)}
|
||||||
scoreStatus == "match" && "text-success",
|
</GroupedClassificationCard>
|
||||||
scoreStatus == "potential" && "text-orange-400",
|
|
||||||
scoreStatus == "unknown" && "text-danger",
|
|
||||||
)}
|
|
||||||
>
|
|
||||||
{Math.round(data.score * 100)}%
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
|
|
||||||
<FaceSelectionDialog
|
|
||||||
faceNames={faceNames}
|
|
||||||
onTrainAttempt={onTrainAttempt}
|
|
||||||
>
|
|
||||||
<AddFaceIcon className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
|
||||||
</FaceSelectionDialog>
|
|
||||||
<Tooltip>
|
|
||||||
<TooltipTrigger>
|
|
||||||
<LuRefreshCw
|
|
||||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
|
||||||
onClick={() => onReprocess()}
|
|
||||||
/>
|
|
||||||
</TooltipTrigger>
|
|
||||||
<TooltipContent>{t("button.reprocessFace")}</TooltipContent>
|
|
||||||
</Tooltip>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</>
|
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1093,80 +939,32 @@ function FaceGrid({
|
|||||||
)}
|
)}
|
||||||
>
|
>
|
||||||
{sortedFaces.map((image: string) => (
|
{sortedFaces.map((image: string) => (
|
||||||
<FaceImage
|
<ClassificationCard
|
||||||
|
className="gap-2 rounded-lg bg-card p-2"
|
||||||
key={image}
|
key={image}
|
||||||
name={pageToggle}
|
data={{
|
||||||
image={image}
|
name: pageToggle,
|
||||||
|
filename: image,
|
||||||
|
filepath: `clips/faces/${pageToggle}/${image}`,
|
||||||
|
}}
|
||||||
selected={selectedFaces.includes(image)}
|
selected={selectedFaces.includes(image)}
|
||||||
onClickFaces={onClickFaces}
|
i18nLibrary="views/faceLibrary"
|
||||||
onDelete={onDelete}
|
onClick={(data, meta) => onClickFaces([data.filename], meta)}
|
||||||
/>
|
>
|
||||||
|
<Tooltip>
|
||||||
|
<TooltipTrigger>
|
||||||
|
<LuTrash2
|
||||||
|
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||||
|
onClick={(e) => {
|
||||||
|
e.stopPropagation();
|
||||||
|
onDelete(pageToggle, [image]);
|
||||||
|
}}
|
||||||
|
/>
|
||||||
|
</TooltipTrigger>
|
||||||
|
<TooltipContent>{t("button.deleteFaceAttempts")}</TooltipContent>
|
||||||
|
</Tooltip>
|
||||||
|
</ClassificationCard>
|
||||||
))}
|
))}
|
||||||
</div>
|
</div>
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
type FaceImageProps = {
|
|
||||||
name: string;
|
|
||||||
image: string;
|
|
||||||
selected: boolean;
|
|
||||||
onClickFaces: (images: string[], ctrl: boolean) => void;
|
|
||||||
onDelete: (name: string, ids: string[]) => void;
|
|
||||||
};
|
|
||||||
function FaceImage({
|
|
||||||
name,
|
|
||||||
image,
|
|
||||||
selected,
|
|
||||||
onClickFaces,
|
|
||||||
onDelete,
|
|
||||||
}: FaceImageProps) {
|
|
||||||
const { t } = useTranslation(["views/faceLibrary"]);
|
|
||||||
|
|
||||||
return (
|
|
||||||
<div
|
|
||||||
className={cn(
|
|
||||||
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
|
|
||||||
selected
|
|
||||||
? "shadow-selected outline-selected"
|
|
||||||
: "outline-transparent duration-500",
|
|
||||||
)}
|
|
||||||
onClick={(e) => {
|
|
||||||
e.stopPropagation();
|
|
||||||
onClickFaces([image], e.ctrlKey || e.metaKey);
|
|
||||||
}}
|
|
||||||
>
|
|
||||||
<div
|
|
||||||
className={cn(
|
|
||||||
"w-full overflow-hidden p-2 *:text-card-foreground",
|
|
||||||
isMobile && "flex justify-center",
|
|
||||||
)}
|
|
||||||
>
|
|
||||||
<img
|
|
||||||
className="h-40 rounded-lg"
|
|
||||||
src={`${baseUrl}clips/faces/${name}/${image}`}
|
|
||||||
/>
|
|
||||||
</div>
|
|
||||||
<div className="rounded-b-lg bg-card p-3">
|
|
||||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
|
||||||
<div className="flex flex-col items-start text-xs text-primary-variant">
|
|
||||||
<div className="smart-capitalize">{name}</div>
|
|
||||||
</div>
|
|
||||||
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
|
|
||||||
<Tooltip>
|
|
||||||
<TooltipTrigger>
|
|
||||||
<LuTrash2
|
|
||||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
|
||||||
onClick={(e) => {
|
|
||||||
e.stopPropagation();
|
|
||||||
onDelete(name, [image]);
|
|
||||||
}}
|
|
||||||
/>
|
|
||||||
</TooltipTrigger>
|
|
||||||
<TooltipContent>{t("button.deleteFaceAttempts")}</TooltipContent>
|
|
||||||
</Tooltip>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|||||||
@ -6,3 +6,17 @@ export type TrainFilter = {
|
|||||||
min_score?: number;
|
min_score?: number;
|
||||||
max_score?: number;
|
max_score?: number;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
export type ClassificationItemData = {
|
||||||
|
filepath: string;
|
||||||
|
filename: string;
|
||||||
|
name: string;
|
||||||
|
timestamp?: number;
|
||||||
|
eventId?: string;
|
||||||
|
score?: number;
|
||||||
|
};
|
||||||
|
|
||||||
|
export type ClassificationThreshold = {
|
||||||
|
recognition: number;
|
||||||
|
unknown: number;
|
||||||
|
};
|
||||||
|
|||||||
@ -1,11 +1,3 @@
|
|||||||
export type FaceLibraryData = {
|
export type FaceLibraryData = {
|
||||||
[faceName: string]: string[];
|
[faceName: string]: string[];
|
||||||
};
|
};
|
||||||
|
|
||||||
export type RecognizedFaceData = {
|
|
||||||
filename: string;
|
|
||||||
timestamp: number;
|
|
||||||
eventId: string;
|
|
||||||
name: string;
|
|
||||||
score: number;
|
|
||||||
};
|
|
||||||
|
|||||||
@ -38,7 +38,11 @@ export default function ModelSelectionView({
|
|||||||
return (
|
return (
|
||||||
<div className="flex size-full gap-2 p-2">
|
<div className="flex size-full gap-2 p-2">
|
||||||
{classificationConfigs.map((config) => (
|
{classificationConfigs.map((config) => (
|
||||||
<ModelCard config={config} onClick={() => onClick(config)} />
|
<ModelCard
|
||||||
|
key={config.name}
|
||||||
|
config={config}
|
||||||
|
onClick={() => onClick(config)}
|
||||||
|
/>
|
||||||
))}
|
))}
|
||||||
</div>
|
</div>
|
||||||
);
|
);
|
||||||
|
|||||||
@ -1,4 +1,3 @@
|
|||||||
import { baseUrl } from "@/api/baseUrl";
|
|
||||||
import TextEntryDialog from "@/components/overlay/dialog/TextEntryDialog";
|
import TextEntryDialog from "@/components/overlay/dialog/TextEntryDialog";
|
||||||
import { Button, buttonVariants } from "@/components/ui/button";
|
import { Button, buttonVariants } from "@/components/ui/button";
|
||||||
import {
|
import {
|
||||||
@ -60,7 +59,16 @@ import { IoMdArrowRoundBack } from "react-icons/io";
|
|||||||
import { MdAutoFixHigh } from "react-icons/md";
|
import { MdAutoFixHigh } from "react-icons/md";
|
||||||
import TrainFilterDialog from "@/components/overlay/dialog/TrainFilterDialog";
|
import TrainFilterDialog from "@/components/overlay/dialog/TrainFilterDialog";
|
||||||
import useApiFilter from "@/hooks/use-api-filter";
|
import useApiFilter from "@/hooks/use-api-filter";
|
||||||
import { TrainFilter } from "@/types/classification";
|
import { ClassificationItemData, TrainFilter } from "@/types/classification";
|
||||||
|
import {
|
||||||
|
ClassificationCard,
|
||||||
|
GroupedClassificationCard,
|
||||||
|
} from "@/components/card/ClassificationCard";
|
||||||
|
import { Event } from "@/types/event";
|
||||||
|
import SearchDetailDialog, {
|
||||||
|
SearchTab,
|
||||||
|
} from "@/components/overlay/detail/SearchDetailDialog";
|
||||||
|
import { SearchResult } from "@/types/search";
|
||||||
|
|
||||||
type ModelTrainingViewProps = {
|
type ModelTrainingViewProps = {
|
||||||
model: CustomClassificationModelConfig;
|
model: CustomClassificationModelConfig;
|
||||||
@ -626,53 +634,34 @@ function DatasetGrid({
|
|||||||
className="scrollbar-container flex flex-wrap gap-2 overflow-y-auto p-2"
|
className="scrollbar-container flex flex-wrap gap-2 overflow-y-auto p-2"
|
||||||
>
|
>
|
||||||
{classData.map((image) => (
|
{classData.map((image) => (
|
||||||
<div
|
<ClassificationCard
|
||||||
className={cn(
|
key={image}
|
||||||
"flex w-60 cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
|
className="w-60 gap-4 rounded-lg bg-card p-2"
|
||||||
selectedImages.includes(image)
|
imgClassName="size-auto"
|
||||||
? "shadow-selected outline-selected"
|
data={{
|
||||||
: "outline-transparent duration-500",
|
filename: image,
|
||||||
)}
|
filepath: `clips/${modelName}/dataset/${categoryName}/${image}`,
|
||||||
onClick={(e) => {
|
name: "",
|
||||||
e.stopPropagation();
|
|
||||||
|
|
||||||
if (e.ctrlKey || e.metaKey) {
|
|
||||||
onClickImages([image], true);
|
|
||||||
}
|
|
||||||
}}
|
}}
|
||||||
|
selected={selectedImages.includes(image)}
|
||||||
|
i18nLibrary="views/classificationModel"
|
||||||
|
onClick={(data, _) => onClickImages([data.filename], true)}
|
||||||
>
|
>
|
||||||
<div
|
<Tooltip>
|
||||||
className={cn(
|
<TooltipTrigger>
|
||||||
"w-full overflow-hidden p-2 *:text-card-foreground",
|
<LuTrash2
|
||||||
isMobile && "flex justify-center",
|
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||||
)}
|
onClick={(e) => {
|
||||||
>
|
e.stopPropagation();
|
||||||
<img
|
onDelete([image]);
|
||||||
className="rounded-lg"
|
}}
|
||||||
src={`${baseUrl}clips/${modelName}/dataset/${categoryName}/${image}`}
|
/>
|
||||||
/>
|
</TooltipTrigger>
|
||||||
</div>
|
<TooltipContent>
|
||||||
<div className="rounded-b-lg bg-card p-3">
|
{t("button.deleteClassificationAttempts")}
|
||||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
</TooltipContent>
|
||||||
<div className="flex w-full flex-row items-start justify-end gap-5 md:gap-4">
|
</Tooltip>
|
||||||
<Tooltip>
|
</ClassificationCard>
|
||||||
<TooltipTrigger>
|
|
||||||
<LuTrash2
|
|
||||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
|
||||||
onClick={(e) => {
|
|
||||||
e.stopPropagation();
|
|
||||||
onDelete([image]);
|
|
||||||
}}
|
|
||||||
/>
|
|
||||||
</TooltipTrigger>
|
|
||||||
<TooltipContent>
|
|
||||||
{t("button.deleteClassificationAttempts")}
|
|
||||||
</TooltipContent>
|
|
||||||
</Tooltip>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
))}
|
))}
|
||||||
</div>
|
</div>
|
||||||
);
|
);
|
||||||
@ -700,20 +689,19 @@ function TrainGrid({
|
|||||||
onRefresh,
|
onRefresh,
|
||||||
onDelete,
|
onDelete,
|
||||||
}: TrainGridProps) {
|
}: TrainGridProps) {
|
||||||
const { t } = useTranslation(["views/classificationModel"]);
|
const trainData = useMemo<ClassificationItemData[]>(
|
||||||
|
|
||||||
const trainData = useMemo(
|
|
||||||
() =>
|
() =>
|
||||||
trainImages
|
trainImages
|
||||||
.map((raw) => {
|
.map((raw) => {
|
||||||
const parts = raw.replaceAll(".webp", "").split("-");
|
const parts = raw.replaceAll(".webp", "").split("-");
|
||||||
const rawScore = Number.parseFloat(parts[2]);
|
const rawScore = Number.parseFloat(parts[4]);
|
||||||
return {
|
return {
|
||||||
raw,
|
filename: raw,
|
||||||
timestamp: parts[0],
|
filepath: `clips/${model.name}/train/${raw}`,
|
||||||
label: parts[1],
|
timestamp: Number.parseFloat(parts[2]),
|
||||||
score: rawScore * 100,
|
eventId: `${parts[0]}-${parts[1]}`,
|
||||||
truePositive: rawScore >= model.threshold,
|
name: parts[3],
|
||||||
|
score: rawScore,
|
||||||
};
|
};
|
||||||
})
|
})
|
||||||
.filter((data) => {
|
.filter((data) => {
|
||||||
@ -721,10 +709,7 @@ function TrainGrid({
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (
|
if (trainFilter.classes && !trainFilter.classes.includes(data.name)) {
|
||||||
trainFilter.classes &&
|
|
||||||
!trainFilter.classes.includes(data.label)
|
|
||||||
) {
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -744,10 +729,68 @@ function TrainGrid({
|
|||||||
|
|
||||||
return true;
|
return true;
|
||||||
})
|
})
|
||||||
.sort((a, b) => b.timestamp.localeCompare(a.timestamp)),
|
.sort((a, b) => b.timestamp - a.timestamp),
|
||||||
[model, trainImages, trainFilter],
|
[model, trainImages, trainFilter],
|
||||||
);
|
);
|
||||||
|
|
||||||
|
if (model.state_config) {
|
||||||
|
return (
|
||||||
|
<StateTrainGrid
|
||||||
|
model={model}
|
||||||
|
contentRef={contentRef}
|
||||||
|
classes={classes}
|
||||||
|
trainData={trainData}
|
||||||
|
selectedImages={selectedImages}
|
||||||
|
onClickImages={onClickImages}
|
||||||
|
onRefresh={onRefresh}
|
||||||
|
onDelete={onDelete}
|
||||||
|
/>
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
return (
|
||||||
|
<ObjectTrainGrid
|
||||||
|
model={model}
|
||||||
|
contentRef={contentRef}
|
||||||
|
classes={classes}
|
||||||
|
trainData={trainData}
|
||||||
|
selectedImages={selectedImages}
|
||||||
|
onClickImages={onClickImages}
|
||||||
|
onRefresh={onRefresh}
|
||||||
|
onDelete={onDelete}
|
||||||
|
/>
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
type StateTrainGridProps = {
|
||||||
|
model: CustomClassificationModelConfig;
|
||||||
|
contentRef: MutableRefObject<HTMLDivElement | null>;
|
||||||
|
classes: string[];
|
||||||
|
trainData?: ClassificationItemData[];
|
||||||
|
selectedImages: string[];
|
||||||
|
onClickImages: (images: string[], ctrl: boolean) => void;
|
||||||
|
onRefresh: () => void;
|
||||||
|
onDelete: (ids: string[]) => void;
|
||||||
|
};
|
||||||
|
function StateTrainGrid({
|
||||||
|
model,
|
||||||
|
contentRef,
|
||||||
|
classes,
|
||||||
|
trainData,
|
||||||
|
selectedImages,
|
||||||
|
onClickImages,
|
||||||
|
onRefresh,
|
||||||
|
onDelete,
|
||||||
|
}: StateTrainGridProps) {
|
||||||
|
const { t } = useTranslation(["views/classificationModel"]);
|
||||||
|
|
||||||
|
const threshold = useMemo(() => {
|
||||||
|
return {
|
||||||
|
recognition: model.threshold,
|
||||||
|
unknown: model.threshold,
|
||||||
|
};
|
||||||
|
}, [model]);
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<div
|
<div
|
||||||
ref={contentRef}
|
ref={contentRef}
|
||||||
@ -757,74 +800,208 @@ function TrainGrid({
|
|||||||
)}
|
)}
|
||||||
>
|
>
|
||||||
{trainData?.map((data) => (
|
{trainData?.map((data) => (
|
||||||
<div
|
<ClassificationCard
|
||||||
key={data.timestamp}
|
key={data.filename}
|
||||||
className={cn(
|
className="w-60 gap-2 rounded-lg bg-card p-2"
|
||||||
"flex w-56 cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
|
imgClassName="size-auto"
|
||||||
selectedImages.includes(data.raw)
|
data={data}
|
||||||
? "shadow-selected outline-selected"
|
threshold={threshold}
|
||||||
: "outline-transparent duration-500",
|
selected={selectedImages.includes(data.filename)}
|
||||||
isMobile && "w-[48%]",
|
i18nLibrary="views/classificationModel"
|
||||||
)}
|
showArea={false}
|
||||||
onClick={(e) => {
|
onClick={(data, meta) => onClickImages([data.filename], meta)}
|
||||||
e.stopPropagation();
|
|
||||||
onClickImages([data.raw], e.ctrlKey || e.metaKey);
|
|
||||||
}}
|
|
||||||
>
|
>
|
||||||
<div
|
<ClassificationSelectionDialog
|
||||||
className={cn(
|
classes={classes}
|
||||||
"w-full overflow-hidden p-2 *:text-card-foreground",
|
modelName={model.name}
|
||||||
isMobile && "flex justify-center",
|
image={data.filename}
|
||||||
)}
|
onRefresh={onRefresh}
|
||||||
>
|
>
|
||||||
<img
|
<TbCategoryPlus className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
||||||
className="w-56 rounded-lg"
|
</ClassificationSelectionDialog>
|
||||||
src={`${baseUrl}clips/${model.name}/train/${data.raw}`}
|
<Tooltip>
|
||||||
/>
|
<TooltipTrigger>
|
||||||
</div>
|
<LuTrash2
|
||||||
<div className="rounded-b-lg bg-card p-3">
|
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
onClick={(e) => {
|
||||||
<div className="flex flex-col items-start text-xs text-primary-variant">
|
e.stopPropagation();
|
||||||
<div className="smart-capitalize">
|
onDelete([data.filename]);
|
||||||
{data.label.replaceAll("_", " ")}
|
}}
|
||||||
</div>
|
/>
|
||||||
<div
|
</TooltipTrigger>
|
||||||
className={cn(
|
<TooltipContent>
|
||||||
"",
|
{t("button.deleteClassificationAttempts")}
|
||||||
data.truePositive ? "text-success" : "text-danger",
|
</TooltipContent>
|
||||||
)}
|
</Tooltip>
|
||||||
>
|
</ClassificationCard>
|
||||||
{data.score}%
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
|
|
||||||
<ClassificationSelectionDialog
|
|
||||||
classes={classes}
|
|
||||||
modelName={model.name}
|
|
||||||
image={data.raw}
|
|
||||||
onRefresh={onRefresh}
|
|
||||||
>
|
|
||||||
<TbCategoryPlus className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
|
||||||
</ClassificationSelectionDialog>
|
|
||||||
<Tooltip>
|
|
||||||
<TooltipTrigger>
|
|
||||||
<LuTrash2
|
|
||||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
|
||||||
onClick={(e) => {
|
|
||||||
e.stopPropagation();
|
|
||||||
onDelete([data.raw]);
|
|
||||||
}}
|
|
||||||
/>
|
|
||||||
</TooltipTrigger>
|
|
||||||
<TooltipContent>
|
|
||||||
{t("button.deleteClassificationAttempts")}
|
|
||||||
</TooltipContent>
|
|
||||||
</Tooltip>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
))}
|
))}
|
||||||
</div>
|
</div>
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
type ObjectTrainGridProps = {
|
||||||
|
model: CustomClassificationModelConfig;
|
||||||
|
contentRef: MutableRefObject<HTMLDivElement | null>;
|
||||||
|
classes: string[];
|
||||||
|
trainData?: ClassificationItemData[];
|
||||||
|
selectedImages: string[];
|
||||||
|
onClickImages: (images: string[], ctrl: boolean) => void;
|
||||||
|
onRefresh: () => void;
|
||||||
|
onDelete: (ids: string[]) => void;
|
||||||
|
};
|
||||||
|
function ObjectTrainGrid({
|
||||||
|
model,
|
||||||
|
contentRef,
|
||||||
|
classes,
|
||||||
|
trainData,
|
||||||
|
selectedImages,
|
||||||
|
onClickImages,
|
||||||
|
onRefresh,
|
||||||
|
onDelete,
|
||||||
|
}: ObjectTrainGridProps) {
|
||||||
|
const { t } = useTranslation(["views/classificationModel"]);
|
||||||
|
|
||||||
|
// item data
|
||||||
|
|
||||||
|
const groups = useMemo(() => {
|
||||||
|
const groups: { [eventId: string]: ClassificationItemData[] } = {};
|
||||||
|
|
||||||
|
trainData
|
||||||
|
?.sort((a, b) => a.eventId!.localeCompare(b.eventId!))
|
||||||
|
.reverse()
|
||||||
|
.forEach((data) => {
|
||||||
|
if (groups[data.eventId!]) {
|
||||||
|
groups[data.eventId!].push(data);
|
||||||
|
} else {
|
||||||
|
groups[data.eventId!] = [data];
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
return groups;
|
||||||
|
}, [trainData]);
|
||||||
|
|
||||||
|
const eventIdsQuery = useMemo(() => Object.keys(groups).join(","), [groups]);
|
||||||
|
|
||||||
|
const { data: events } = useSWR<Event[]>([
|
||||||
|
"event_ids",
|
||||||
|
{ ids: eventIdsQuery },
|
||||||
|
]);
|
||||||
|
|
||||||
|
const threshold = useMemo(() => {
|
||||||
|
return {
|
||||||
|
recognition: model.threshold,
|
||||||
|
unknown: model.threshold,
|
||||||
|
};
|
||||||
|
}, [model]);
|
||||||
|
|
||||||
|
// selection
|
||||||
|
|
||||||
|
const [selectedEvent, setSelectedEvent] = useState<Event>();
|
||||||
|
const [dialogTab, setDialogTab] = useState<SearchTab>("details");
|
||||||
|
|
||||||
|
// handlers
|
||||||
|
|
||||||
|
const handleClickEvent = useCallback(
|
||||||
|
(
|
||||||
|
group: ClassificationItemData[],
|
||||||
|
event: Event | undefined,
|
||||||
|
meta: boolean,
|
||||||
|
) => {
|
||||||
|
if (event && selectedImages.length == 0 && !meta) {
|
||||||
|
setSelectedEvent(event);
|
||||||
|
} else {
|
||||||
|
const anySelected =
|
||||||
|
group.find((item) => selectedImages.includes(item.filename)) !=
|
||||||
|
undefined;
|
||||||
|
|
||||||
|
if (anySelected) {
|
||||||
|
// deselect all
|
||||||
|
const toDeselect: string[] = [];
|
||||||
|
group.forEach((item) => {
|
||||||
|
if (selectedImages.includes(item.filename)) {
|
||||||
|
toDeselect.push(item.filename);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
onClickImages(toDeselect, false);
|
||||||
|
} else {
|
||||||
|
// select all
|
||||||
|
onClickImages(
|
||||||
|
group.map((item) => item.filename),
|
||||||
|
true,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
[selectedImages, onClickImages],
|
||||||
|
);
|
||||||
|
|
||||||
|
return (
|
||||||
|
<>
|
||||||
|
<SearchDetailDialog
|
||||||
|
search={
|
||||||
|
selectedEvent ? (selectedEvent as unknown as SearchResult) : undefined
|
||||||
|
}
|
||||||
|
page={dialogTab}
|
||||||
|
setSimilarity={undefined}
|
||||||
|
setSearchPage={setDialogTab}
|
||||||
|
setSearch={(search) => setSelectedEvent(search as unknown as Event)}
|
||||||
|
setInputFocused={() => {}}
|
||||||
|
/>
|
||||||
|
|
||||||
|
<div
|
||||||
|
ref={contentRef}
|
||||||
|
className="scrollbar-container flex flex-wrap gap-2 overflow-y-scroll p-1"
|
||||||
|
>
|
||||||
|
{Object.entries(groups).map(([key, group]) => {
|
||||||
|
const event = events?.find((ev) => ev.id == key);
|
||||||
|
return (
|
||||||
|
<GroupedClassificationCard
|
||||||
|
key={key}
|
||||||
|
group={group}
|
||||||
|
event={event}
|
||||||
|
threshold={threshold}
|
||||||
|
selectedItems={selectedImages}
|
||||||
|
i18nLibrary="views/classificationModel"
|
||||||
|
objectType={model.object_config?.objects?.at(0) ?? "Object"}
|
||||||
|
onClick={(data) => {
|
||||||
|
if (data) {
|
||||||
|
onClickImages([data.filename], true);
|
||||||
|
} else {
|
||||||
|
handleClickEvent(group, event, true);
|
||||||
|
}
|
||||||
|
}}
|
||||||
|
onSelectEvent={() => {}}
|
||||||
|
>
|
||||||
|
{(data) => (
|
||||||
|
<>
|
||||||
|
<ClassificationSelectionDialog
|
||||||
|
classes={classes}
|
||||||
|
modelName={model.name}
|
||||||
|
image={data.filename}
|
||||||
|
onRefresh={onRefresh}
|
||||||
|
>
|
||||||
|
<TbCategoryPlus className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
|
||||||
|
</ClassificationSelectionDialog>
|
||||||
|
<Tooltip>
|
||||||
|
<TooltipTrigger>
|
||||||
|
<LuTrash2
|
||||||
|
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||||
|
onClick={(e) => {
|
||||||
|
e.stopPropagation();
|
||||||
|
onDelete([data.filename]);
|
||||||
|
}}
|
||||||
|
/>
|
||||||
|
</TooltipTrigger>
|
||||||
|
<TooltipContent>
|
||||||
|
{t("button.deleteClassificationAttempts")}
|
||||||
|
</TooltipContent>
|
||||||
|
</Tooltip>
|
||||||
|
</>
|
||||||
|
)}
|
||||||
|
</GroupedClassificationCard>
|
||||||
|
);
|
||||||
|
})}
|
||||||
|
</div>
|
||||||
|
</>
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user