Strip model name before training

This commit is contained in:
Nicolas Mowen 2026-01-11 09:15:50 -07:00
parent 7b5a1b7284
commit 3533578aef

View File

@ -43,6 +43,7 @@ def write_training_metadata(model_name: str, image_count: int) -> None:
model_name: Name of the classification model model_name: Name of the classification model
image_count: Number of images used in training image_count: Number of images used in training
""" """
model_name = model_name.strip()
clips_model_dir = os.path.join(CLIPS_DIR, model_name) clips_model_dir = os.path.join(CLIPS_DIR, model_name)
os.makedirs(clips_model_dir, exist_ok=True) os.makedirs(clips_model_dir, exist_ok=True)
@ -70,6 +71,7 @@ def read_training_metadata(model_name: str) -> dict[str, any] | None:
Returns: Returns:
Dictionary with last_training_date and last_training_image_count, or None if not found Dictionary with last_training_date and last_training_image_count, or None if not found
""" """
model_name = model_name.strip()
clips_model_dir = os.path.join(CLIPS_DIR, model_name) clips_model_dir = os.path.join(CLIPS_DIR, model_name)
metadata_path = os.path.join(clips_model_dir, TRAINING_METADATA_FILE) metadata_path = os.path.join(clips_model_dir, TRAINING_METADATA_FILE)
@ -95,6 +97,7 @@ def get_dataset_image_count(model_name: str) -> int:
Returns: Returns:
Total count of images across all categories Total count of images across all categories
""" """
model_name = model_name.strip()
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset") dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
if not os.path.exists(dataset_dir): if not os.path.exists(dataset_dir):
@ -126,6 +129,7 @@ class ClassificationTrainingProcess(FrigateProcess):
"TF_KERAS_MOBILENET_V2_WEIGHTS_URL", "TF_KERAS_MOBILENET_V2_WEIGHTS_URL",
"", "",
) )
model_name = model_name.strip()
super().__init__( super().__init__(
stop_event=None, stop_event=None,
priority=PROCESS_PRIORITY_LOW, priority=PROCESS_PRIORITY_LOW,
@ -292,6 +296,7 @@ class ClassificationTrainingProcess(FrigateProcess):
def kickoff_model_training( def kickoff_model_training(
embeddingRequestor: EmbeddingsRequestor, model_name: str embeddingRequestor: EmbeddingsRequestor, model_name: str
) -> None: ) -> None:
model_name = model_name.strip()
requestor = InterProcessRequestor() requestor = InterProcessRequestor()
requestor.send_data( requestor.send_data(
UPDATE_MODEL_STATE, UPDATE_MODEL_STATE,
@ -359,6 +364,7 @@ def collect_state_classification_examples(
model_name: Name of the classification model model_name: Name of the classification model
cameras: Dict mapping camera names to normalized crop coordinates [x1, y1, x2, y2] (0-1) cameras: Dict mapping camera names to normalized crop coordinates [x1, y1, x2, y2] (0-1)
""" """
model_name = model_name.strip()
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset") dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
# Step 1: Get review items for the cameras # Step 1: Get review items for the cameras
@ -714,6 +720,7 @@ def collect_object_classification_examples(
model_name: Name of the classification model model_name: Name of the classification model
label: Object label to collect (e.g., "person", "car") label: Object label to collect (e.g., "person", "car")
""" """
model_name = model_name.strip()
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset") dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
temp_dir = os.path.join(dataset_dir, "temp") temp_dir = os.path.join(dataset_dir, "temp")
os.makedirs(temp_dir, exist_ok=True) os.makedirs(temp_dir, exist_ok=True)