RKNN Fixes (#20380)
Some checks are pending
CI / AMD64 Build (push) Waiting to run
CI / ARM Build (push) Waiting to run
CI / Jetson Jetpack 6 (push) Waiting to run
CI / AMD64 Extra Build (push) Blocked by required conditions
CI / ARM Extra Build (push) Blocked by required conditions
CI / Synaptics Build (push) Blocked by required conditions
CI / Assemble and push default build (push) Blocked by required conditions

* Fix arm64 unable to optimize onnx

* Move to onnx format for rknn
This commit is contained in:
Nicolas Mowen 2025-10-07 13:45:03 -06:00 committed by GitHub
parent 37afd5da6b
commit 33f0c23389
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 58 additions and 5 deletions

View File

@ -2,6 +2,7 @@
import logging
import os
import platform
from abc import ABC, abstractmethod
from typing import Any
@ -13,6 +14,30 @@ from frigate.util.rknn_converter import auto_convert_model, is_rknn_compatible
logger = logging.getLogger(__name__)
def is_arm64_platform() -> bool:
"""Check if we're running on an ARM platform."""
machine = platform.machine().lower()
return machine in ("aarch64", "arm64", "armv8", "armv7l")
def get_ort_session_options() -> ort.SessionOptions | None:
"""Get ONNX Runtime session options with appropriate settings.
On ARM/RKNN platforms, use basic optimizations to avoid graph fusion issues
that can break certain models. On amd64, use default optimizations for better performance.
"""
sess_options = None
if is_arm64_platform():
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = (
ort.GraphOptimizationLevel.ORT_ENABLE_BASIC
)
return sess_options
# Import OpenVINO only when needed to avoid circular dependencies
try:
import openvino as ov
@ -469,6 +494,7 @@ def get_optimized_runner(
return ONNXModelRunner(
ort.InferenceSession(
model_path,
sess_options=get_ort_session_options(),
providers=providers,
provider_options=options,
)

View File

@ -107,8 +107,11 @@ class Rknn(DetectionApi):
# Determine model type from config
model_type = self.detector_config.model.model_type
# Convert enum to string if needed
model_type_str = model_type.value if model_type else None
# Auto-convert the model
converted_path = auto_convert_model(model_path, model_type.value)
converted_path = auto_convert_model(model_path, model_type_str)
if converted_path:
model_props["path"] = converted_path

View File

@ -14,7 +14,7 @@ logger = logging.getLogger(__name__)
MODEL_TYPE_CONFIGS = {
"yolo-generic": {
"mean_values": [[0, 0, 0]],
"std_values": [[255, 255, 255]],
"std_values": [[1, 1, 1]],
"target_platform": None, # Will be set dynamically
},
"yolonas": {
@ -179,6 +179,22 @@ def convert_onnx_to_rknn(
config = MODEL_TYPE_CONFIGS[model_type].copy()
config["target_platform"] = soc
# RKNN toolkit requires .onnx extension, create temporary copy if needed
temp_onnx_path = None
onnx_model_path = onnx_path
if not onnx_path.endswith(".onnx"):
import shutil
temp_onnx_path = f"{onnx_path}.onnx"
logger.debug(f"Creating temporary ONNX copy: {temp_onnx_path}")
try:
shutil.copy2(onnx_path, temp_onnx_path)
onnx_model_path = temp_onnx_path
except Exception as e:
logger.error(f"Failed to create temporary ONNX copy: {e}")
return False
try:
from rknn.api import RKNN # type: ignore
@ -188,18 +204,18 @@ def convert_onnx_to_rknn(
if model_type == "jina-clip-v1-vision":
load_output = rknn.load_onnx(
model=onnx_path,
model=onnx_model_path,
inputs=["pixel_values"],
input_size_list=[[1, 3, 224, 224]],
)
elif model_type == "arcface-r100":
load_output = rknn.load_onnx(
model=onnx_path,
model=onnx_model_path,
inputs=["data"],
input_size_list=[[1, 3, 112, 112]],
)
else:
load_output = rknn.load_onnx(model=onnx_path)
load_output = rknn.load_onnx(model=onnx_model_path)
if load_output != 0:
logger.error("Failed to load ONNX model")
@ -219,6 +235,14 @@ def convert_onnx_to_rknn(
except Exception as e:
logger.error(f"Error during RKNN conversion: {e}")
return False
finally:
# Clean up temporary file if created
if temp_onnx_path and os.path.exists(temp_onnx_path):
try:
os.remove(temp_onnx_path)
logger.debug(f"Removed temporary ONNX file: {temp_onnx_path}")
except Exception as e:
logger.warning(f"Failed to remove temporary ONNX file: {e}")
def cleanup_stale_lock(lock_file_path: Path) -> bool: