mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-01-22 20:18:30 +03:00
Implement LLM Chat API with tool calling support (#21731)
* Implement initial tools definiton APIs * Add initial chat completion API with tool support * Implement other providers * Cleanup
This commit is contained in:
parent
16d94c3cfa
commit
31ee62b760
476
frigate/api/chat.py
Normal file
476
frigate/api/chat.py
Normal file
@ -0,0 +1,476 @@
|
||||
"""Chat and LLM tool calling APIs."""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from fastapi import APIRouter, Body, Depends, Request
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
from frigate.api.auth import (
|
||||
allow_any_authenticated,
|
||||
get_allowed_cameras_for_filter,
|
||||
)
|
||||
from frigate.api.defs.query.events_query_parameters import EventsQueryParams
|
||||
from frigate.api.defs.request.chat_body import ChatCompletionRequest
|
||||
from frigate.api.defs.response.chat_response import (
|
||||
ChatCompletionResponse,
|
||||
ChatMessageResponse,
|
||||
)
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.api.event import events
|
||||
from frigate.genai import get_genai_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter(tags=[Tags.chat])
|
||||
|
||||
|
||||
class ToolExecuteRequest(BaseModel):
|
||||
"""Request model for tool execution."""
|
||||
|
||||
tool_name: str
|
||||
arguments: Dict[str, Any]
|
||||
|
||||
|
||||
def get_tool_definitions() -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Get OpenAI-compatible tool definitions for Frigate.
|
||||
|
||||
Returns a list of tool definitions that can be used with OpenAI-compatible
|
||||
function calling APIs.
|
||||
"""
|
||||
return [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "search_objects",
|
||||
"description": (
|
||||
"Search for detected objects in Frigate by camera, object label, time range, "
|
||||
"zones, and other filters. Use this to answer questions about when "
|
||||
"objects were detected, what objects appeared, or to find specific object detections. "
|
||||
"An 'object' in Frigate represents a tracked detection (e.g., a person, package, car)."
|
||||
),
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"camera": {
|
||||
"type": "string",
|
||||
"description": "Camera name to filter by (optional). Use 'all' for all cameras.",
|
||||
},
|
||||
"label": {
|
||||
"type": "string",
|
||||
"description": "Object label to filter by (e.g., 'person', 'package', 'car').",
|
||||
},
|
||||
"after": {
|
||||
"type": "string",
|
||||
"description": "Start time in ISO 8601 format (e.g., '2024-01-01T00:00:00Z').",
|
||||
},
|
||||
"before": {
|
||||
"type": "string",
|
||||
"description": "End time in ISO 8601 format (e.g., '2024-01-01T23:59:59Z').",
|
||||
},
|
||||
"zones": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "List of zone names to filter by.",
|
||||
},
|
||||
"limit": {
|
||||
"type": "integer",
|
||||
"description": "Maximum number of objects to return (default: 10).",
|
||||
"default": 10,
|
||||
},
|
||||
},
|
||||
},
|
||||
"required": [],
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@router.get(
|
||||
"/chat/tools",
|
||||
dependencies=[Depends(allow_any_authenticated())],
|
||||
summary="Get available tools",
|
||||
description="Returns OpenAI-compatible tool definitions for function calling.",
|
||||
)
|
||||
def get_tools(request: Request) -> JSONResponse:
|
||||
"""Get list of available tools for LLM function calling."""
|
||||
tools = get_tool_definitions()
|
||||
return JSONResponse(content={"tools": tools})
|
||||
|
||||
|
||||
async def _execute_search_objects(
|
||||
request: Request,
|
||||
arguments: Dict[str, Any],
|
||||
allowed_cameras: List[str],
|
||||
) -> JSONResponse:
|
||||
"""
|
||||
Execute the search_objects tool.
|
||||
|
||||
This searches for detected objects (events) in Frigate using the same
|
||||
logic as the events API endpoint.
|
||||
"""
|
||||
# Parse ISO 8601 timestamps to Unix timestamps if provided
|
||||
after = arguments.get("after")
|
||||
before = arguments.get("before")
|
||||
|
||||
if after:
|
||||
try:
|
||||
after_dt = datetime.fromisoformat(after.replace("Z", "+00:00"))
|
||||
after = after_dt.timestamp()
|
||||
except (ValueError, AttributeError):
|
||||
logger.warning(f"Invalid 'after' timestamp format: {after}")
|
||||
after = None
|
||||
|
||||
if before:
|
||||
try:
|
||||
before_dt = datetime.fromisoformat(before.replace("Z", "+00:00"))
|
||||
before = before_dt.timestamp()
|
||||
except (ValueError, AttributeError):
|
||||
logger.warning(f"Invalid 'before' timestamp format: {before}")
|
||||
before = None
|
||||
|
||||
# Convert zones array to comma-separated string if provided
|
||||
zones = arguments.get("zones")
|
||||
if isinstance(zones, list):
|
||||
zones = ",".join(zones)
|
||||
elif zones is None:
|
||||
zones = "all"
|
||||
|
||||
# Build query parameters compatible with EventsQueryParams
|
||||
query_params = EventsQueryParams(
|
||||
camera=arguments.get("camera", "all"),
|
||||
cameras=arguments.get("camera", "all"),
|
||||
label=arguments.get("label", "all"),
|
||||
labels=arguments.get("label", "all"),
|
||||
zones=zones,
|
||||
zone=zones,
|
||||
after=after,
|
||||
before=before,
|
||||
limit=arguments.get("limit", 10),
|
||||
)
|
||||
|
||||
try:
|
||||
# Call the events endpoint function directly
|
||||
# The events function is synchronous and takes params and allowed_cameras
|
||||
response = events(query_params, allowed_cameras)
|
||||
|
||||
# The response is already a JSONResponse with event data
|
||||
# Return it as-is for the LLM
|
||||
return response
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing search_objects: {e}", exc_info=True)
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"message": f"Error searching objects: {str(e)}",
|
||||
},
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/chat/execute",
|
||||
dependencies=[Depends(allow_any_authenticated())],
|
||||
summary="Execute a tool",
|
||||
description="Execute a tool function call from an LLM.",
|
||||
)
|
||||
async def execute_tool(
|
||||
request: Request,
|
||||
body: ToolExecuteRequest = Body(...),
|
||||
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
|
||||
) -> JSONResponse:
|
||||
"""
|
||||
Execute a tool function call.
|
||||
|
||||
This endpoint receives tool calls from LLMs and executes the corresponding
|
||||
Frigate operations, returning results in a format the LLM can understand.
|
||||
"""
|
||||
tool_name = body.tool_name
|
||||
arguments = body.arguments
|
||||
|
||||
logger.debug(f"Executing tool: {tool_name} with arguments: {arguments}")
|
||||
|
||||
if tool_name == "search_objects":
|
||||
return await _execute_search_objects(request, arguments, allowed_cameras)
|
||||
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"message": f"Unknown tool: {tool_name}",
|
||||
"tool": tool_name,
|
||||
},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
|
||||
async def _execute_tool_internal(
|
||||
tool_name: str,
|
||||
arguments: Dict[str, Any],
|
||||
request: Request,
|
||||
allowed_cameras: List[str],
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Internal helper to execute a tool and return the result as a dict.
|
||||
|
||||
This is used by the chat completion endpoint to execute tools.
|
||||
"""
|
||||
if tool_name == "search_objects":
|
||||
response = await _execute_search_objects(request, arguments, allowed_cameras)
|
||||
try:
|
||||
if hasattr(response, "body"):
|
||||
body_str = response.body.decode("utf-8")
|
||||
return json.loads(body_str)
|
||||
elif hasattr(response, "content"):
|
||||
return response.content
|
||||
else:
|
||||
return {}
|
||||
except (json.JSONDecodeError, AttributeError) as e:
|
||||
logger.warning(f"Failed to extract tool result: {e}")
|
||||
return {"error": "Failed to parse tool result"}
|
||||
else:
|
||||
return {"error": f"Unknown tool: {tool_name}"}
|
||||
|
||||
|
||||
@router.post(
|
||||
"/chat/completion",
|
||||
response_model=ChatCompletionResponse,
|
||||
dependencies=[Depends(allow_any_authenticated())],
|
||||
summary="Chat completion with tool calling",
|
||||
description=(
|
||||
"Send a chat message to the configured GenAI provider with tool calling support. "
|
||||
"The LLM can call Frigate tools to answer questions about your cameras and events."
|
||||
),
|
||||
)
|
||||
async def chat_completion(
|
||||
request: Request,
|
||||
body: ChatCompletionRequest = Body(...),
|
||||
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
|
||||
) -> JSONResponse:
|
||||
"""
|
||||
Chat completion endpoint with tool calling support.
|
||||
|
||||
This endpoint:
|
||||
1. Gets the configured GenAI client
|
||||
2. Gets tool definitions
|
||||
3. Sends messages + tools to LLM
|
||||
4. Handles tool_calls if present
|
||||
5. Executes tools and sends results back to LLM
|
||||
6. Repeats until final answer
|
||||
7. Returns response to user
|
||||
"""
|
||||
genai_client = get_genai_client(request.app.frigate_config)
|
||||
if not genai_client:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"error": "GenAI is not configured. Please configure a GenAI provider in your Frigate config.",
|
||||
},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
tools = get_tool_definitions()
|
||||
conversation = []
|
||||
|
||||
current_datetime = datetime.now(timezone.utc)
|
||||
current_date_str = current_datetime.strftime("%Y-%m-%d")
|
||||
current_time_str = current_datetime.strftime("%H:%M:%S %Z")
|
||||
system_prompt = f"""You are a helpful assistant for Frigate, a security camera NVR system. You help users answer questions about their cameras, detected objects, and events.
|
||||
|
||||
Current date and time: {current_date_str} at {current_time_str} (UTC)
|
||||
|
||||
When users ask questions about "today", "yesterday", "this week", etc., use the current date above as reference.
|
||||
When searching for objects or events, use ISO 8601 format for dates (e.g., {current_date_str}T00:00:00Z for the start of today).
|
||||
Always be accurate with time calculations based on the current date provided."""
|
||||
|
||||
conversation.append(
|
||||
{
|
||||
"role": "system",
|
||||
"content": system_prompt,
|
||||
}
|
||||
)
|
||||
|
||||
for msg in body.messages:
|
||||
msg_dict = {
|
||||
"role": msg.role,
|
||||
"content": msg.content,
|
||||
}
|
||||
if msg.tool_call_id:
|
||||
msg_dict["tool_call_id"] = msg.tool_call_id
|
||||
if msg.name:
|
||||
msg_dict["name"] = msg.name
|
||||
conversation.append(msg_dict)
|
||||
|
||||
tool_iterations = 0
|
||||
max_iterations = body.max_tool_iterations
|
||||
|
||||
logger.debug(
|
||||
f"Starting chat completion with {len(conversation)} message(s), "
|
||||
f"{len(tools)} tool(s) available, max_iterations={max_iterations}"
|
||||
)
|
||||
|
||||
try:
|
||||
while tool_iterations < max_iterations:
|
||||
logger.debug(
|
||||
f"Calling LLM (iteration {tool_iterations + 1}/{max_iterations}) "
|
||||
f"with {len(conversation)} message(s) in conversation"
|
||||
)
|
||||
response = genai_client.chat_with_tools(
|
||||
messages=conversation,
|
||||
tools=tools if tools else None,
|
||||
tool_choice="auto",
|
||||
)
|
||||
|
||||
if response.get("finish_reason") == "error":
|
||||
logger.error("GenAI client returned an error")
|
||||
return JSONResponse(
|
||||
content={
|
||||
"error": "An error occurred while processing your request.",
|
||||
},
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
assistant_message = {
|
||||
"role": "assistant",
|
||||
"content": response.get("content"),
|
||||
}
|
||||
if response.get("tool_calls"):
|
||||
assistant_message["tool_calls"] = [
|
||||
{
|
||||
"id": tc["id"],
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tc["name"],
|
||||
"arguments": json.dumps(tc["arguments"]),
|
||||
},
|
||||
}
|
||||
for tc in response["tool_calls"]
|
||||
]
|
||||
conversation.append(assistant_message)
|
||||
|
||||
tool_calls = response.get("tool_calls")
|
||||
if not tool_calls:
|
||||
logger.debug(
|
||||
f"Chat completion finished with final answer (iterations: {tool_iterations})"
|
||||
)
|
||||
return JSONResponse(
|
||||
content=ChatCompletionResponse(
|
||||
message=ChatMessageResponse(
|
||||
role="assistant",
|
||||
content=response.get("content"),
|
||||
tool_calls=None,
|
||||
),
|
||||
finish_reason=response.get("finish_reason", "stop"),
|
||||
tool_iterations=tool_iterations,
|
||||
).model_dump(),
|
||||
)
|
||||
|
||||
# Execute tools
|
||||
tool_iterations += 1
|
||||
logger.debug(
|
||||
f"Tool calls detected (iteration {tool_iterations}/{max_iterations}): "
|
||||
f"{len(tool_calls)} tool(s) to execute"
|
||||
)
|
||||
tool_results = []
|
||||
|
||||
for tool_call in tool_calls:
|
||||
tool_name = tool_call["name"]
|
||||
tool_args = tool_call["arguments"]
|
||||
tool_call_id = tool_call["id"]
|
||||
|
||||
logger.debug(
|
||||
f"Executing tool: {tool_name} (id: {tool_call_id}) with arguments: {json.dumps(tool_args, indent=2)}"
|
||||
)
|
||||
|
||||
try:
|
||||
tool_result = await _execute_tool_internal(
|
||||
tool_name, tool_args, request, allowed_cameras
|
||||
)
|
||||
|
||||
if isinstance(tool_result, dict):
|
||||
result_content = json.dumps(tool_result)
|
||||
result_summary = tool_result
|
||||
if isinstance(tool_result, dict) and isinstance(
|
||||
tool_result.get("content"), list
|
||||
):
|
||||
result_count = len(tool_result.get("content", []))
|
||||
result_summary = {
|
||||
"count": result_count,
|
||||
"sample": tool_result.get("content", [])[:2]
|
||||
if result_count > 0
|
||||
else [],
|
||||
}
|
||||
logger.debug(
|
||||
f"Tool {tool_name} (id: {tool_call_id}) completed successfully. "
|
||||
f"Result: {json.dumps(result_summary, indent=2)}"
|
||||
)
|
||||
elif isinstance(tool_result, str):
|
||||
result_content = tool_result
|
||||
logger.debug(
|
||||
f"Tool {tool_name} (id: {tool_call_id}) completed successfully. "
|
||||
f"Result length: {len(result_content)} characters"
|
||||
)
|
||||
else:
|
||||
result_content = str(tool_result)
|
||||
logger.debug(
|
||||
f"Tool {tool_name} (id: {tool_call_id}) completed successfully. "
|
||||
f"Result type: {type(tool_result).__name__}"
|
||||
)
|
||||
|
||||
tool_results.append(
|
||||
{
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call_id,
|
||||
"content": result_content,
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error executing tool {tool_name} (id: {tool_call_id}): {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
error_content = json.dumps(
|
||||
{"error": f"Tool execution failed: {str(e)}"}
|
||||
)
|
||||
tool_results.append(
|
||||
{
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call_id,
|
||||
"content": error_content,
|
||||
}
|
||||
)
|
||||
logger.debug(
|
||||
f"Tool {tool_name} (id: {tool_call_id}) failed. Error result added to conversation."
|
||||
)
|
||||
|
||||
conversation.extend(tool_results)
|
||||
logger.debug(
|
||||
f"Added {len(tool_results)} tool result(s) to conversation. "
|
||||
f"Continuing with next LLM call..."
|
||||
)
|
||||
|
||||
logger.warning(
|
||||
f"Max tool iterations ({max_iterations}) reached. Returning partial response."
|
||||
)
|
||||
return JSONResponse(
|
||||
content=ChatCompletionResponse(
|
||||
message=ChatMessageResponse(
|
||||
role="assistant",
|
||||
content="I reached the maximum number of tool call iterations. Please try rephrasing your question.",
|
||||
tool_calls=None,
|
||||
),
|
||||
finish_reason="length",
|
||||
tool_iterations=tool_iterations,
|
||||
).model_dump(),
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in chat completion: {e}", exc_info=True)
|
||||
return JSONResponse(
|
||||
content={
|
||||
"error": "An error occurred while processing your request.",
|
||||
},
|
||||
status_code=500,
|
||||
)
|
||||
34
frigate/api/defs/request/chat_body.py
Normal file
34
frigate/api/defs/request/chat_body.py
Normal file
@ -0,0 +1,34 @@
|
||||
"""Chat API request models."""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
"""A single message in a chat conversation."""
|
||||
|
||||
role: str = Field(
|
||||
description="Message role: 'user', 'assistant', 'system', or 'tool'"
|
||||
)
|
||||
content: str = Field(description="Message content")
|
||||
tool_call_id: Optional[str] = Field(
|
||||
default=None, description="For tool messages, the ID of the tool call"
|
||||
)
|
||||
name: Optional[str] = Field(
|
||||
default=None, description="For tool messages, the tool name"
|
||||
)
|
||||
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
"""Request for chat completion with tool calling."""
|
||||
|
||||
messages: list[ChatMessage] = Field(
|
||||
description="List of messages in the conversation"
|
||||
)
|
||||
max_tool_iterations: int = Field(
|
||||
default=5,
|
||||
ge=1,
|
||||
le=10,
|
||||
description="Maximum number of tool call iterations (default: 5)",
|
||||
)
|
||||
37
frigate/api/defs/response/chat_response.py
Normal file
37
frigate/api/defs/response/chat_response.py
Normal file
@ -0,0 +1,37 @@
|
||||
"""Chat API response models."""
|
||||
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ToolCall(BaseModel):
|
||||
"""A tool call from the LLM."""
|
||||
|
||||
id: str = Field(description="Unique identifier for this tool call")
|
||||
name: str = Field(description="Tool name to call")
|
||||
arguments: dict[str, Any] = Field(description="Arguments for the tool call")
|
||||
|
||||
|
||||
class ChatMessageResponse(BaseModel):
|
||||
"""A message in the chat response."""
|
||||
|
||||
role: str = Field(description="Message role")
|
||||
content: Optional[str] = Field(
|
||||
default=None, description="Message content (None if tool calls present)"
|
||||
)
|
||||
tool_calls: Optional[list[ToolCall]] = Field(
|
||||
default=None, description="Tool calls if LLM wants to call tools"
|
||||
)
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
"""Response from chat completion."""
|
||||
|
||||
message: ChatMessageResponse = Field(description="The assistant's message")
|
||||
finish_reason: str = Field(
|
||||
description="Reason generation stopped: 'stop', 'tool_calls', 'length', 'error'"
|
||||
)
|
||||
tool_iterations: int = Field(
|
||||
default=0, description="Number of tool call iterations performed"
|
||||
)
|
||||
@ -5,6 +5,7 @@ class Tags(Enum):
|
||||
app = "App"
|
||||
auth = "Auth"
|
||||
camera = "Camera"
|
||||
chat = "Chat"
|
||||
events = "Events"
|
||||
export = "Export"
|
||||
classification = "Classification"
|
||||
|
||||
@ -16,6 +16,7 @@ from frigate.api import app as main_app
|
||||
from frigate.api import (
|
||||
auth,
|
||||
camera,
|
||||
chat,
|
||||
classification,
|
||||
event,
|
||||
export,
|
||||
@ -121,6 +122,7 @@ def create_fastapi_app(
|
||||
# Order of include_router matters: https://fastapi.tiangolo.com/tutorial/path-params/#order-matters
|
||||
app.include_router(auth.router)
|
||||
app.include_router(camera.router)
|
||||
app.include_router(chat.router)
|
||||
app.include_router(classification.router)
|
||||
app.include_router(review.router)
|
||||
app.include_router(main_app.router)
|
||||
|
||||
@ -285,6 +285,64 @@ Guidelines:
|
||||
"""Get the context window size for this provider in tokens."""
|
||||
return 4096
|
||||
|
||||
def chat_with_tools(
|
||||
self,
|
||||
messages: list[dict[str, Any]],
|
||||
tools: Optional[list[dict[str, Any]]] = None,
|
||||
tool_choice: Optional[str] = "auto",
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Send chat messages to LLM with optional tool definitions.
|
||||
|
||||
This method handles conversation-style interactions with the LLM,
|
||||
including function calling/tool usage capabilities.
|
||||
|
||||
Args:
|
||||
messages: List of message dictionaries. Each message should have:
|
||||
- 'role': str - One of 'user', 'assistant', 'system', or 'tool'
|
||||
- 'content': str - The message content
|
||||
- 'tool_call_id': Optional[str] - For tool responses, the ID of the tool call
|
||||
- 'name': Optional[str] - For tool messages, the tool name
|
||||
tools: Optional list of tool definitions in OpenAI-compatible format.
|
||||
Each tool should have 'type': 'function' and 'function' with:
|
||||
- 'name': str - Tool name
|
||||
- 'description': str - Tool description
|
||||
- 'parameters': dict - JSON schema for parameters
|
||||
tool_choice: How the model should handle tools:
|
||||
- 'auto': Model decides whether to call tools
|
||||
- 'none': Model must not call tools
|
||||
- 'required': Model must call at least one tool
|
||||
- Or a dict specifying a specific tool to call
|
||||
**kwargs: Additional provider-specific parameters.
|
||||
|
||||
Returns:
|
||||
Dictionary with:
|
||||
- 'content': Optional[str] - The text response from the LLM, None if tool calls
|
||||
- 'tool_calls': Optional[List[Dict]] - List of tool calls if LLM wants to call tools.
|
||||
Each tool call dict has:
|
||||
- 'id': str - Unique identifier for this tool call
|
||||
- 'name': str - Tool name to call
|
||||
- 'arguments': dict - Arguments for the tool call (parsed JSON)
|
||||
- 'finish_reason': str - Reason generation stopped:
|
||||
- 'stop': Normal completion
|
||||
- 'tool_calls': LLM wants to call tools
|
||||
- 'length': Hit token limit
|
||||
- 'error': An error occurred
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If the provider doesn't implement this method.
|
||||
"""
|
||||
# Base implementation - each provider should override this
|
||||
logger.warning(
|
||||
f"{self.__class__.__name__} does not support chat_with_tools. "
|
||||
"This method should be overridden by the provider implementation."
|
||||
)
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
|
||||
def get_genai_client(config: FrigateConfig) -> Optional[GenAIClient]:
|
||||
"""Get the GenAI client."""
|
||||
|
||||
@ -1,8 +1,9 @@
|
||||
"""Azure OpenAI Provider for Frigate AI."""
|
||||
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
from typing import Optional
|
||||
from typing import Any, Optional
|
||||
from urllib.parse import parse_qs, urlparse
|
||||
|
||||
from openai import AzureOpenAI
|
||||
@ -75,3 +76,93 @@ class OpenAIClient(GenAIClient):
|
||||
def get_context_size(self) -> int:
|
||||
"""Get the context window size for Azure OpenAI."""
|
||||
return 128000
|
||||
|
||||
def chat_with_tools(
|
||||
self,
|
||||
messages: list[dict[str, Any]],
|
||||
tools: Optional[list[dict[str, Any]]] = None,
|
||||
tool_choice: Optional[str] = "auto",
|
||||
) -> dict[str, Any]:
|
||||
try:
|
||||
openai_tool_choice = None
|
||||
if tool_choice:
|
||||
if tool_choice == "none":
|
||||
openai_tool_choice = "none"
|
||||
elif tool_choice == "auto":
|
||||
openai_tool_choice = "auto"
|
||||
elif tool_choice == "required":
|
||||
openai_tool_choice = "required"
|
||||
|
||||
request_params = {
|
||||
"model": self.genai_config.model,
|
||||
"messages": messages,
|
||||
"timeout": self.timeout,
|
||||
}
|
||||
|
||||
if tools:
|
||||
request_params["tools"] = tools
|
||||
if openai_tool_choice is not None:
|
||||
request_params["tool_choice"] = openai_tool_choice
|
||||
|
||||
result = self.provider.chat.completions.create(**request_params)
|
||||
|
||||
if (
|
||||
result is None
|
||||
or not hasattr(result, "choices")
|
||||
or len(result.choices) == 0
|
||||
):
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
choice = result.choices[0]
|
||||
message = choice.message
|
||||
|
||||
content = message.content.strip() if message.content else None
|
||||
|
||||
tool_calls = None
|
||||
if message.tool_calls:
|
||||
tool_calls = []
|
||||
for tool_call in message.tool_calls:
|
||||
try:
|
||||
arguments = json.loads(tool_call.function.arguments)
|
||||
except (json.JSONDecodeError, AttributeError) as e:
|
||||
logger.warning(
|
||||
f"Failed to parse tool call arguments: {e}, "
|
||||
f"tool: {tool_call.function.name if hasattr(tool_call.function, 'name') else 'unknown'}"
|
||||
)
|
||||
arguments = {}
|
||||
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": tool_call.id if hasattr(tool_call, "id") else "",
|
||||
"name": tool_call.function.name
|
||||
if hasattr(tool_call.function, "name")
|
||||
else "",
|
||||
"arguments": arguments,
|
||||
}
|
||||
)
|
||||
|
||||
finish_reason = "error"
|
||||
if hasattr(choice, "finish_reason") and choice.finish_reason:
|
||||
finish_reason = choice.finish_reason
|
||||
elif tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
|
||||
return {
|
||||
"content": content,
|
||||
"tool_calls": tool_calls,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.warning("Azure OpenAI returned an error: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
@ -1,7 +1,8 @@
|
||||
"""Gemini Provider for Frigate AI."""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
import google.generativeai as genai
|
||||
from google.api_core.exceptions import GoogleAPICallError
|
||||
@ -58,3 +59,188 @@ class GeminiClient(GenAIClient):
|
||||
"""Get the context window size for Gemini."""
|
||||
# Gemini Pro Vision has a 1M token context window
|
||||
return 1000000
|
||||
|
||||
def chat_with_tools(
|
||||
self,
|
||||
messages: list[dict[str, Any]],
|
||||
tools: Optional[list[dict[str, Any]]] = None,
|
||||
tool_choice: Optional[str] = "auto",
|
||||
) -> dict[str, Any]:
|
||||
try:
|
||||
if tools:
|
||||
function_declarations = []
|
||||
for tool in tools:
|
||||
if tool.get("type") == "function":
|
||||
func_def = tool.get("function", {})
|
||||
function_declarations.append(
|
||||
genai.protos.FunctionDeclaration(
|
||||
name=func_def.get("name"),
|
||||
description=func_def.get("description"),
|
||||
parameters=genai.protos.Schema(
|
||||
type=genai.protos.Type.OBJECT,
|
||||
properties={
|
||||
prop_name: genai.protos.Schema(
|
||||
type=_convert_json_type_to_gemini(
|
||||
prop.get("type")
|
||||
),
|
||||
description=prop.get("description"),
|
||||
)
|
||||
for prop_name, prop in func_def.get(
|
||||
"parameters", {}
|
||||
)
|
||||
.get("properties", {})
|
||||
.items()
|
||||
},
|
||||
required=func_def.get("parameters", {}).get(
|
||||
"required", []
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
tool_config = genai.protos.Tool(
|
||||
function_declarations=function_declarations
|
||||
)
|
||||
|
||||
if tool_choice == "none":
|
||||
function_calling_config = genai.protos.FunctionCallingConfig(
|
||||
mode=genai.protos.FunctionCallingConfig.Mode.NONE
|
||||
)
|
||||
elif tool_choice == "required":
|
||||
function_calling_config = genai.protos.FunctionCallingConfig(
|
||||
mode=genai.protos.FunctionCallingConfig.Mode.ANY
|
||||
)
|
||||
else:
|
||||
function_calling_config = genai.protos.FunctionCallingConfig(
|
||||
mode=genai.protos.FunctionCallingConfig.Mode.AUTO
|
||||
)
|
||||
else:
|
||||
tool_config = None
|
||||
function_calling_config = None
|
||||
|
||||
contents = []
|
||||
for msg in messages:
|
||||
role = msg.get("role")
|
||||
content = msg.get("content", "")
|
||||
|
||||
if role == "system":
|
||||
continue
|
||||
elif role == "user":
|
||||
contents.append({"role": "user", "parts": [content]})
|
||||
elif role == "assistant":
|
||||
parts = [content] if content else []
|
||||
if "tool_calls" in msg:
|
||||
for tc in msg["tool_calls"]:
|
||||
parts.append(
|
||||
genai.protos.FunctionCall(
|
||||
name=tc["function"]["name"],
|
||||
args=json.loads(tc["function"]["arguments"]),
|
||||
)
|
||||
)
|
||||
contents.append({"role": "model", "parts": parts})
|
||||
elif role == "tool":
|
||||
tool_name = msg.get("name", "")
|
||||
tool_result = (
|
||||
json.loads(content) if isinstance(content, str) else content
|
||||
)
|
||||
contents.append(
|
||||
{
|
||||
"role": "function",
|
||||
"parts": [
|
||||
genai.protos.FunctionResponse(
|
||||
name=tool_name,
|
||||
response=tool_result,
|
||||
)
|
||||
],
|
||||
}
|
||||
)
|
||||
|
||||
generation_config = genai.types.GenerationConfig(
|
||||
candidate_count=1,
|
||||
)
|
||||
if function_calling_config:
|
||||
generation_config.function_calling_config = function_calling_config
|
||||
|
||||
response = self.provider.generate_content(
|
||||
contents,
|
||||
tools=[tool_config] if tool_config else None,
|
||||
generation_config=generation_config,
|
||||
request_options=genai.types.RequestOptions(timeout=self.timeout),
|
||||
)
|
||||
|
||||
content = None
|
||||
tool_calls = None
|
||||
|
||||
if response.candidates and response.candidates[0].content:
|
||||
parts = response.candidates[0].content.parts
|
||||
text_parts = [p.text for p in parts if hasattr(p, "text") and p.text]
|
||||
if text_parts:
|
||||
content = " ".join(text_parts).strip()
|
||||
|
||||
function_calls = [
|
||||
p.function_call
|
||||
for p in parts
|
||||
if hasattr(p, "function_call") and p.function_call
|
||||
]
|
||||
if function_calls:
|
||||
tool_calls = []
|
||||
for fc in function_calls:
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": f"call_{hash(fc.name)}",
|
||||
"name": fc.name,
|
||||
"arguments": dict(fc.args)
|
||||
if hasattr(fc, "args")
|
||||
else {},
|
||||
}
|
||||
)
|
||||
|
||||
finish_reason = "error"
|
||||
if response.candidates:
|
||||
finish_reason_map = {
|
||||
genai.types.FinishReason.STOP: "stop",
|
||||
genai.types.FinishReason.MAX_TOKENS: "length",
|
||||
genai.types.FinishReason.SAFETY: "stop",
|
||||
genai.types.FinishReason.RECITATION: "stop",
|
||||
genai.types.FinishReason.OTHER: "error",
|
||||
}
|
||||
finish_reason = finish_reason_map.get(
|
||||
response.candidates[0].finish_reason, "error"
|
||||
)
|
||||
elif tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
|
||||
return {
|
||||
"content": content,
|
||||
"tool_calls": tool_calls,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
except GoogleAPICallError as e:
|
||||
logger.warning("Gemini returned an error: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
except Exception as e:
|
||||
logger.warning("Unexpected error in Gemini chat_with_tools: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
|
||||
def _convert_json_type_to_gemini(json_type: str) -> genai.protos.Type:
|
||||
type_map = {
|
||||
"string": genai.protos.Type.STRING,
|
||||
"integer": genai.protos.Type.INTEGER,
|
||||
"number": genai.protos.Type.NUMBER,
|
||||
"boolean": genai.protos.Type.BOOLEAN,
|
||||
"array": genai.protos.Type.ARRAY,
|
||||
"object": genai.protos.Type.OBJECT,
|
||||
}
|
||||
return type_map.get(json_type, genai.protos.Type.STRING)
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
"""llama.cpp Provider for Frigate AI."""
|
||||
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
@ -99,3 +100,132 @@ class LlamaCppClient(GenAIClient):
|
||||
def get_context_size(self) -> int:
|
||||
"""Get the context window size for llama.cpp."""
|
||||
return self.genai_config.provider_options.get("context_size", 4096)
|
||||
|
||||
def chat_with_tools(
|
||||
self,
|
||||
messages: list[dict[str, Any]],
|
||||
tools: Optional[list[dict[str, Any]]] = None,
|
||||
tool_choice: Optional[str] = "auto",
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Send chat messages to llama.cpp server with optional tool definitions.
|
||||
|
||||
Uses the OpenAI-compatible endpoint but passes through all native llama.cpp
|
||||
parameters (like slot_id, temperature, etc.) via provider_options.
|
||||
"""
|
||||
if self.provider is None:
|
||||
logger.warning(
|
||||
"llama.cpp provider has not been initialized. Check your llama.cpp configuration."
|
||||
)
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
try:
|
||||
openai_tool_choice = None
|
||||
if tool_choice:
|
||||
if tool_choice == "none":
|
||||
openai_tool_choice = "none"
|
||||
elif tool_choice == "auto":
|
||||
openai_tool_choice = "auto"
|
||||
elif tool_choice == "required":
|
||||
openai_tool_choice = "required"
|
||||
|
||||
payload = {
|
||||
"messages": messages,
|
||||
}
|
||||
|
||||
if tools:
|
||||
payload["tools"] = tools
|
||||
if openai_tool_choice is not None:
|
||||
payload["tool_choice"] = openai_tool_choice
|
||||
|
||||
provider_opts = {
|
||||
k: v for k, v in self.provider_options.items() if k != "context_size"
|
||||
}
|
||||
payload.update(provider_opts)
|
||||
|
||||
response = requests.post(
|
||||
f"{self.provider}/v1/chat/completions",
|
||||
json=payload,
|
||||
timeout=self.timeout,
|
||||
)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
|
||||
if result is None or "choices" not in result or len(result["choices"]) == 0:
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
choice = result["choices"][0]
|
||||
message = choice.get("message", {})
|
||||
|
||||
content = message.get("content")
|
||||
if content:
|
||||
content = content.strip()
|
||||
else:
|
||||
content = None
|
||||
|
||||
tool_calls = None
|
||||
if "tool_calls" in message and message["tool_calls"]:
|
||||
tool_calls = []
|
||||
for tool_call in message["tool_calls"]:
|
||||
try:
|
||||
function_data = tool_call.get("function", {})
|
||||
arguments_str = function_data.get("arguments", "{}")
|
||||
arguments = json.loads(arguments_str)
|
||||
except (json.JSONDecodeError, KeyError, TypeError) as e:
|
||||
logger.warning(
|
||||
f"Failed to parse tool call arguments: {e}, "
|
||||
f"tool: {function_data.get('name', 'unknown')}"
|
||||
)
|
||||
arguments = {}
|
||||
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": tool_call.get("id", ""),
|
||||
"name": function_data.get("name", ""),
|
||||
"arguments": arguments,
|
||||
}
|
||||
)
|
||||
|
||||
finish_reason = "error"
|
||||
if "finish_reason" in choice and choice["finish_reason"]:
|
||||
finish_reason = choice["finish_reason"]
|
||||
elif tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
|
||||
return {
|
||||
"content": content,
|
||||
"tool_calls": tool_calls,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
except requests.exceptions.Timeout as e:
|
||||
logger.warning("llama.cpp request timed out: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.warning("llama.cpp returned an error: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
except Exception as e:
|
||||
logger.warning("Unexpected error in llama.cpp chat_with_tools: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
"""Ollama Provider for Frigate AI."""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
@ -77,3 +78,120 @@ class OllamaClient(GenAIClient):
|
||||
return self.genai_config.provider_options.get("options", {}).get(
|
||||
"num_ctx", 4096
|
||||
)
|
||||
|
||||
def chat_with_tools(
|
||||
self,
|
||||
messages: list[dict[str, Any]],
|
||||
tools: Optional[list[dict[str, Any]]] = None,
|
||||
tool_choice: Optional[str] = "auto",
|
||||
) -> dict[str, Any]:
|
||||
if self.provider is None:
|
||||
logger.warning(
|
||||
"Ollama provider has not been initialized. Check your Ollama configuration."
|
||||
)
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
try:
|
||||
request_messages = []
|
||||
for msg in messages:
|
||||
msg_dict = {
|
||||
"role": msg.get("role"),
|
||||
"content": msg.get("content", ""),
|
||||
}
|
||||
if msg.get("tool_call_id"):
|
||||
msg_dict["tool_call_id"] = msg["tool_call_id"]
|
||||
if msg.get("name"):
|
||||
msg_dict["name"] = msg["name"]
|
||||
if msg.get("tool_calls"):
|
||||
msg_dict["tool_calls"] = msg["tool_calls"]
|
||||
request_messages.append(msg_dict)
|
||||
|
||||
request_params = {
|
||||
"model": self.genai_config.model,
|
||||
"messages": request_messages,
|
||||
}
|
||||
|
||||
if tools:
|
||||
request_params["tools"] = tools
|
||||
if tool_choice:
|
||||
if tool_choice == "none":
|
||||
request_params["tool_choice"] = "none"
|
||||
elif tool_choice == "required":
|
||||
request_params["tool_choice"] = "required"
|
||||
elif tool_choice == "auto":
|
||||
request_params["tool_choice"] = "auto"
|
||||
|
||||
request_params.update(self.provider_options)
|
||||
|
||||
response = self.provider.chat(**request_params)
|
||||
|
||||
if not response or "message" not in response:
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
message = response["message"]
|
||||
content = (
|
||||
message.get("content", "").strip() if message.get("content") else None
|
||||
)
|
||||
|
||||
tool_calls = None
|
||||
if "tool_calls" in message and message["tool_calls"]:
|
||||
tool_calls = []
|
||||
for tool_call in message["tool_calls"]:
|
||||
try:
|
||||
function_data = tool_call.get("function", {})
|
||||
arguments_str = function_data.get("arguments", "{}")
|
||||
arguments = json.loads(arguments_str)
|
||||
except (json.JSONDecodeError, KeyError, TypeError) as e:
|
||||
logger.warning(
|
||||
f"Failed to parse tool call arguments: {e}, "
|
||||
f"tool: {function_data.get('name', 'unknown')}"
|
||||
)
|
||||
arguments = {}
|
||||
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": tool_call.get("id", ""),
|
||||
"name": function_data.get("name", ""),
|
||||
"arguments": arguments,
|
||||
}
|
||||
)
|
||||
|
||||
finish_reason = "error"
|
||||
if "done" in response and response["done"]:
|
||||
if tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
elif tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
|
||||
return {
|
||||
"content": content,
|
||||
"tool_calls": tool_calls,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
except (TimeoutException, ResponseError, ConnectionError) as e:
|
||||
logger.warning("Ollama returned an error: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
except Exception as e:
|
||||
logger.warning("Unexpected error in Ollama chat_with_tools: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
@ -1,8 +1,9 @@
|
||||
"""OpenAI Provider for Frigate AI."""
|
||||
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
from typing import Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
from httpx import TimeoutException
|
||||
from openai import OpenAI
|
||||
@ -100,3 +101,113 @@ class OpenAIClient(GenAIClient):
|
||||
f"Using default context size {self.context_size} for model {self.genai_config.model}"
|
||||
)
|
||||
return self.context_size
|
||||
|
||||
def chat_with_tools(
|
||||
self,
|
||||
messages: list[dict[str, Any]],
|
||||
tools: Optional[list[dict[str, Any]]] = None,
|
||||
tool_choice: Optional[str] = "auto",
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Send chat messages to OpenAI with optional tool definitions.
|
||||
|
||||
Implements function calling/tool usage for OpenAI models.
|
||||
"""
|
||||
try:
|
||||
openai_tool_choice = None
|
||||
if tool_choice:
|
||||
if tool_choice == "none":
|
||||
openai_tool_choice = "none"
|
||||
elif tool_choice == "auto":
|
||||
openai_tool_choice = "auto"
|
||||
elif tool_choice == "required":
|
||||
openai_tool_choice = "required"
|
||||
|
||||
request_params = {
|
||||
"model": self.genai_config.model,
|
||||
"messages": messages,
|
||||
"timeout": self.timeout,
|
||||
}
|
||||
|
||||
if tools:
|
||||
request_params["tools"] = tools
|
||||
if openai_tool_choice is not None:
|
||||
request_params["tool_choice"] = openai_tool_choice
|
||||
|
||||
if isinstance(self.genai_config.provider_options, dict):
|
||||
excluded_options = {"context_size"}
|
||||
provider_opts = {
|
||||
k: v
|
||||
for k, v in self.genai_config.provider_options.items()
|
||||
if k not in excluded_options
|
||||
}
|
||||
request_params.update(provider_opts)
|
||||
|
||||
result = self.provider.chat.completions.create(**request_params)
|
||||
|
||||
if (
|
||||
result is None
|
||||
or not hasattr(result, "choices")
|
||||
or len(result.choices) == 0
|
||||
):
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
choice = result.choices[0]
|
||||
message = choice.message
|
||||
content = message.content.strip() if message.content else None
|
||||
|
||||
tool_calls = None
|
||||
if message.tool_calls:
|
||||
tool_calls = []
|
||||
for tool_call in message.tool_calls:
|
||||
try:
|
||||
arguments = json.loads(tool_call.function.arguments)
|
||||
except (json.JSONDecodeError, AttributeError) as e:
|
||||
logger.warning(
|
||||
f"Failed to parse tool call arguments: {e}, "
|
||||
f"tool: {tool_call.function.name if hasattr(tool_call.function, 'name') else 'unknown'}"
|
||||
)
|
||||
arguments = {}
|
||||
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": tool_call.id if hasattr(tool_call, "id") else "",
|
||||
"name": tool_call.function.name
|
||||
if hasattr(tool_call.function, "name")
|
||||
else "",
|
||||
"arguments": arguments,
|
||||
}
|
||||
)
|
||||
|
||||
finish_reason = "error"
|
||||
if hasattr(choice, "finish_reason") and choice.finish_reason:
|
||||
finish_reason = choice.finish_reason
|
||||
elif tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
|
||||
return {
|
||||
"content": content,
|
||||
"tool_calls": tool_calls,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
except TimeoutException as e:
|
||||
logger.warning("OpenAI request timed out: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
except Exception as e:
|
||||
logger.warning("OpenAI returned an error: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user