Initial commit to enable Yolox models with OpenVINO in Frigate

This commit is contained in:
Anil Ozyalcin 2023-01-28 20:52:35 -08:00
parent 116edce3dc
commit 2d8ca064fe
2 changed files with 92 additions and 19 deletions

View File

@ -22,6 +22,9 @@ class InputTensorEnum(str, Enum):
nchw = "nchw" nchw = "nchw"
nhwc = "nhwc" nhwc = "nhwc"
class ModelTypeEnum(str, Enum):
ssd = "ssd"
yolox = "yolox"
class ModelConfig(BaseModel): class ModelConfig(BaseModel):
path: Optional[str] = Field(title="Custom Object detection model path.") path: Optional[str] = Field(title="Custom Object detection model path.")
@ -37,6 +40,9 @@ class ModelConfig(BaseModel):
input_pixel_format: PixelFormatEnum = Field( input_pixel_format: PixelFormatEnum = Field(
default=PixelFormatEnum.rgb, title="Model Input Pixel Color Format" default=PixelFormatEnum.rgb, title="Model Input Pixel Color Format"
) )
model_type: ModelTypeEnum = Field(
default=ModelTypeEnum.ssd, title="Object Detection Model Type"
)
_merged_labelmap: Optional[Dict[int, str]] = PrivateAttr() _merged_labelmap: Optional[Dict[int, str]] = PrivateAttr()
_colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr() _colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr()

View File

@ -4,6 +4,7 @@ import openvino.runtime as ov
from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig from frigate.detectors.detector_config import BaseDetectorConfig
from frigate.config import ModelTypeEnum
from typing import Literal from typing import Literal
from pydantic import Extra, Field from pydantic import Extra, Field
@ -24,6 +25,14 @@ class OvDetector(DetectionApi):
def __init__(self, detector_config: OvDetectorConfig): def __init__(self, detector_config: OvDetectorConfig):
self.ov_core = ov.Core() self.ov_core = ov.Core()
self.ov_model = self.ov_core.read_model(detector_config.model.path) self.ov_model = self.ov_core.read_model(detector_config.model.path)
self.ov_model_type = detector_config.model.model_type
self.num_classes = 80 # TODO
self.h = detector_config.model.height # 416
self.w = detector_config.model.width # 416
logger.info(self.ov_model_type)
if(self.ov_model_type == ModelTypeEnum.yolox):
self.set_strides_grids()
self.interpreter = self.ov_core.compile_model( self.interpreter = self.ov_core.compile_model(
model=self.ov_model, device_name=detector_config.device model=self.ov_model, device_name=detector_config.device
@ -39,28 +48,86 @@ class OvDetector(DetectionApi):
logger.info(f"Model has {self.output_indexes} Output Tensors") logger.info(f"Model has {self.output_indexes} Output Tensors")
break break
def detect_raw(self, tensor_input): def set_strides_grids(self):
grids = []
expanded_strides = []
strides = [8, 16, 32]
hsizes = [self.h // stride for stride in strides]
wsizes = [self.w // stride for stride in strides]
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
expanded_strides.append(np.full((*shape, 1), stride))
self.grids = np.concatenate(grids, 1)
self.expanded_strides = np.concatenate(expanded_strides, 1)
def detect_raw(self, tensor_input):
infer_request = self.interpreter.create_infer_request() infer_request = self.interpreter.create_infer_request()
infer_request.infer([tensor_input]) infer_request.infer([tensor_input])
results = infer_request.get_output_tensor() if(self.ov_model_type == ModelTypeEnum.ssd):
results = infer_request.get_output_tensor()
detections = np.zeros((20, 6), np.float32) detections = np.zeros((20, 6), np.float32)
i = 0 i = 0
for object_detected in results.data[0, 0, :]: for object_detected in results.data[0, 0, :]:
if object_detected[0] != -1: if object_detected[0] != -1:
logger.debug(object_detected) logger.debug(object_detected)
if object_detected[2] < 0.1 or i == 20: if object_detected[2] < 0.1 or i == 20:
break break
detections[i] = [ detections[i] = [
object_detected[1], # Label ID object_detected[1], # Label ID
float(object_detected[2]), # Confidence float(object_detected[2]), # Confidence
object_detected[4], # y_min object_detected[4], # y_min
object_detected[3], # x_min object_detected[3], # x_min
object_detected[6], # y_max object_detected[6], # y_max
object_detected[5], # x_max object_detected[5], # x_max
] ]
i += 1 i += 1
return detections
return detections elif(self.ov_model_type == ModelTypeEnum.yolox):
out_tensor = infer_request.get_output_tensor()
results = out_tensor.data
results[..., :2] = (results[..., :2] + self.grids) * self.expanded_strides
results[..., 2:4] = np.exp(results[..., 2:4]) * self.expanded_strides
image_pred = results[0, ...]
class_conf = np.max(image_pred[:, 5:5+self.num_classes], axis=1, keepdims=True)
class_pred = np.argmax(image_pred[: , 5:5+self.num_classes], axis=1)
class_pred = np.expand_dims(class_pred, axis=1)
conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= 0.3).squeeze()
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
dets = np.concatenate((image_pred[:, :5], class_conf, class_pred), axis=1)
dets = dets[conf_mask]
ordered = dets[dets[:, 5].argsort()[::-1]][:20]
detections = np.zeros((20, 6), np.float32)
i = 0
for object_detected in ordered:
if i < 20:
# [x, y, h, w, box_score, class_no_1, ..., class_no_80],
detections[i] = [
object_detected[6], # Label ID
object_detected[5], # Confidence
(object_detected[1]-(object_detected[3]/2))/self.h, # y_min
(object_detected[0]-(object_detected[2]/2))/self.w, # x_min
(object_detected[1]+(object_detected[3]/2))/self.h, # y_max
(object_detected[0]+(object_detected[2]/2))/self.w, # x_max
]
#logger.info(object_detected)
#logger.info(detections[i])
i += 1
else:
break
return detections