diff --git a/frigate/embeddings/onnx/jina_v1_embedding.py b/frigate/embeddings/onnx/jina_v1_embedding.py index 519247f3c..5e3ee7f3b 100644 --- a/frigate/embeddings/onnx/jina_v1_embedding.py +++ b/frigate/embeddings/onnx/jina_v1_embedding.py @@ -2,6 +2,7 @@ import logging import os +import threading import warnings from transformers import AutoFeatureExtractor, AutoTokenizer @@ -54,6 +55,7 @@ class JinaV1TextEmbedding(BaseEmbedding): self.tokenizer = None self.feature_extractor = None self.runner = None + self._lock = threading.Lock() files_names = list(self.download_urls.keys()) + [self.tokenizer_file] if not all( @@ -134,17 +136,18 @@ class JinaV1TextEmbedding(BaseEmbedding): ) def _preprocess_inputs(self, raw_inputs): - max_length = max(len(self.tokenizer.encode(text)) for text in raw_inputs) - return [ - self.tokenizer( - text, - padding="max_length", - truncation=True, - max_length=max_length, - return_tensors="np", - ) - for text in raw_inputs - ] + with self._lock: + max_length = max(len(self.tokenizer.encode(text)) for text in raw_inputs) + return [ + self.tokenizer( + text, + padding="max_length", + truncation=True, + max_length=max_length, + return_tensors="np", + ) + for text in raw_inputs + ] class JinaV1ImageEmbedding(BaseEmbedding): @@ -174,6 +177,7 @@ class JinaV1ImageEmbedding(BaseEmbedding): self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name) self.feature_extractor = None self.runner: BaseModelRunner | None = None + self._lock = threading.Lock() files_names = list(self.download_urls.keys()) if not all( os.path.exists(os.path.join(self.download_path, n)) for n in files_names @@ -216,8 +220,9 @@ class JinaV1ImageEmbedding(BaseEmbedding): ) def _preprocess_inputs(self, raw_inputs): - processed_images = [self._process_image(img) for img in raw_inputs] - return [ - self.feature_extractor(images=image, return_tensors="np") - for image in processed_images - ] + with self._lock: + processed_images = [self._process_image(img) for img in raw_inputs] + return [ + self.feature_extractor(images=image, return_tensors="np") + for image in processed_images + ]