mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-05 18:55:23 +03:00
Add the detector
This commit is contained in:
parent
e43a7e65f9
commit
2a83a3626c
@ -94,7 +94,6 @@ COPY --from=ov-converter /models/public/ssdlite_mobilenet_v2/FP16 openvino-model
|
|||||||
RUN wget -q https://github.com/openvinotoolkit/open_model_zoo/raw/master/data/dataset_classes/coco_91cl_bkgr.txt -O openvino-model/coco_91cl_bkgr.txt && \
|
RUN wget -q https://github.com/openvinotoolkit/open_model_zoo/raw/master/data/dataset_classes/coco_91cl_bkgr.txt -O openvino-model/coco_91cl_bkgr.txt && \
|
||||||
sed -i 's/truck/car/g' openvino-model/coco_91cl_bkgr.txt
|
sed -i 's/truck/car/g' openvino-model/coco_91cl_bkgr.txt
|
||||||
# Get Audio Model and labels
|
# Get Audio Model and labels
|
||||||
RUN wget -qO edgetpu_audio_model.tflite https://tfhub.dev/google/coral-model/yamnet/classification/coral/1?coral-format=tflite
|
|
||||||
RUN wget -qO cpu_audio_model.tflite https://tfhub.dev/google/lite-model/yamnet/classification/tflite/1?lite-format=tflite
|
RUN wget -qO cpu_audio_model.tflite https://tfhub.dev/google/lite-model/yamnet/classification/tflite/1?lite-format=tflite
|
||||||
COPY audio-labelmap.txt .
|
COPY audio-labelmap.txt .
|
||||||
|
|
||||||
|
|||||||
@ -21,6 +21,7 @@ from frigate.comms.mqtt import MqttClient
|
|||||||
from frigate.comms.ws import WebSocketClient
|
from frigate.comms.ws import WebSocketClient
|
||||||
from frigate.config import FrigateConfig
|
from frigate.config import FrigateConfig
|
||||||
from frigate.const import (
|
from frigate.const import (
|
||||||
|
AUDIO_DETECTOR,
|
||||||
CACHE_DIR,
|
CACHE_DIR,
|
||||||
CLIPS_DIR,
|
CLIPS_DIR,
|
||||||
CONFIG_DIR,
|
CONFIG_DIR,
|
||||||
@ -322,6 +323,12 @@ class FrigateApp:
|
|||||||
detector_config,
|
detector_config,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if any(c.audio.enabled for c in self.config.cameras.items()):
|
||||||
|
self.detectors[AUDIO_DETECTOR] = ObjectDetectProcess(
|
||||||
|
AUDIO_DETECTOR,
|
||||||
|
|
||||||
|
)
|
||||||
|
|
||||||
def start_detected_frames_processor(self) -> None:
|
def start_detected_frames_processor(self) -> None:
|
||||||
self.detected_frames_processor = TrackedObjectProcessor(
|
self.detected_frames_processor = TrackedObjectProcessor(
|
||||||
self.config,
|
self.config,
|
||||||
|
|||||||
@ -12,6 +12,10 @@ PLUS_ENV_VAR = "PLUS_API_KEY"
|
|||||||
PLUS_API_HOST = "https://api.frigate.video"
|
PLUS_API_HOST = "https://api.frigate.video"
|
||||||
BTBN_PATH = "/usr/lib/btbn-ffmpeg"
|
BTBN_PATH = "/usr/lib/btbn-ffmpeg"
|
||||||
|
|
||||||
|
# Audio Consts
|
||||||
|
|
||||||
|
AUDIO_DETECTOR = "audio-detector"
|
||||||
|
|
||||||
# Regex Consts
|
# Regex Consts
|
||||||
|
|
||||||
REGEX_CAMERA_NAME = r"^[a-zA-Z0-9_-]+$"
|
REGEX_CAMERA_NAME = r"^[a-zA-Z0-9_-]+$"
|
||||||
|
|||||||
65
frigate/detectors/plugins/audio_tfl.py
Normal file
65
frigate/detectors/plugins/audio_tfl.py
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
import logging
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from pydantic import Field
|
||||||
|
from typing_extensions import Literal
|
||||||
|
|
||||||
|
from frigate.detectors.detection_api import DetectionApi
|
||||||
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||||
|
|
||||||
|
try:
|
||||||
|
from tflite_runtime.interpreter import Interpreter
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
from tensorflow.lite.python.interpreter import Interpreter
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
DETECTOR_KEY = "audio"
|
||||||
|
|
||||||
|
|
||||||
|
class AudioDetectorConfig(BaseDetectorConfig):
|
||||||
|
type: Literal[DETECTOR_KEY]
|
||||||
|
|
||||||
|
|
||||||
|
class CpuTfl(DetectionApi):
|
||||||
|
type_key = DETECTOR_KEY
|
||||||
|
|
||||||
|
def __init__(self, detector_config: AudioDetectorConfig):
|
||||||
|
self.interpreter = Interpreter(
|
||||||
|
model_path="/cpu_audio_model.tflite",
|
||||||
|
num_threads=3,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.interpreter.allocate_tensors()
|
||||||
|
|
||||||
|
self.tensor_input_details = self.interpreter.get_input_details()
|
||||||
|
self.tensor_output_details = self.interpreter.get_output_details()
|
||||||
|
|
||||||
|
def detect_raw(self, tensor_input):
|
||||||
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||||
|
self.interpreter.invoke()
|
||||||
|
detections = np.zeros((20, 6), np.float32)
|
||||||
|
|
||||||
|
res = self.interpreter.get_tensor(self.tensor_output_details[0]["index"])[0]
|
||||||
|
non_zero_indices = res > 0
|
||||||
|
class_ids = np.argpartition(-res, 20)[:20]
|
||||||
|
class_ids = class_ids[np.argsort(-res[class_ids])]
|
||||||
|
class_ids = class_ids[non_zero_indices[class_ids]]
|
||||||
|
scores = res[class_ids]
|
||||||
|
boxes = np.full((scores.shape[0], 4), -1, np.float32)
|
||||||
|
count = len(scores)
|
||||||
|
|
||||||
|
for i in range(count):
|
||||||
|
if scores[i] < 0.4 or i == 20:
|
||||||
|
break
|
||||||
|
detections[i] = [
|
||||||
|
class_ids[i],
|
||||||
|
float(scores[i]),
|
||||||
|
boxes[i][0],
|
||||||
|
boxes[i][1],
|
||||||
|
boxes[i][2],
|
||||||
|
boxes[i][3],
|
||||||
|
]
|
||||||
|
|
||||||
|
return detections
|
||||||
Loading…
Reference in New Issue
Block a user