mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-01-22 20:18:30 +03:00
remove decorator and specifically suppress TFLite delegate creation messages
This commit is contained in:
parent
2f9308e0b1
commit
26d4f5f0ab
@ -13,7 +13,7 @@ from frigate.comms.event_metadata_updater import (
|
||||
)
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import MODEL_CACHE_DIR
|
||||
from frigate.log import redirect_output_to_logger
|
||||
from frigate.log import suppress_stderr_during
|
||||
from frigate.util.object import calculate_region
|
||||
|
||||
from ..types import DataProcessorMetrics
|
||||
@ -80,13 +80,14 @@ class BirdRealTimeProcessor(RealTimeProcessorApi):
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to download {path}: {e}")
|
||||
|
||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||
def __build_detector(self) -> None:
|
||||
self.interpreter = Interpreter(
|
||||
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
|
||||
num_threads=2,
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
# Suppress TFLite delegate creation messages that bypass Python logging
|
||||
with suppress_stderr_during("tflite_interpreter_init"):
|
||||
self.interpreter = Interpreter(
|
||||
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
|
||||
num_threads=2,
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
|
||||
@ -21,7 +21,7 @@ from frigate.config.classification import (
|
||||
ObjectClassificationType,
|
||||
)
|
||||
from frigate.const import CLIPS_DIR, MODEL_CACHE_DIR
|
||||
from frigate.log import redirect_output_to_logger
|
||||
from frigate.log import suppress_stderr_during
|
||||
from frigate.types import TrackedObjectUpdateTypesEnum
|
||||
from frigate.util.builtin import EventsPerSecond, InferenceSpeed, load_labels
|
||||
from frigate.util.object import box_overlaps, calculate_region
|
||||
@ -72,7 +72,6 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
self.last_run = datetime.datetime.now().timestamp()
|
||||
self.__build_detector()
|
||||
|
||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||
def __build_detector(self) -> None:
|
||||
try:
|
||||
from tflite_runtime.interpreter import Interpreter
|
||||
@ -89,11 +88,13 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
self.labelmap = {}
|
||||
return
|
||||
|
||||
self.interpreter = Interpreter(
|
||||
model_path=model_path,
|
||||
num_threads=2,
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
# Suppress TFLite delegate creation messages that bypass Python logging
|
||||
with suppress_stderr_during("tflite_interpreter_init"):
|
||||
self.interpreter = Interpreter(
|
||||
model_path=model_path,
|
||||
num_threads=2,
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
self.labelmap = load_labels(labelmap_path, prefill=0)
|
||||
@ -377,7 +378,6 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
|
||||
self.__build_detector()
|
||||
|
||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||
def __build_detector(self) -> None:
|
||||
model_path = os.path.join(self.model_dir, "model.tflite")
|
||||
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
|
||||
@ -389,11 +389,13 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
self.labelmap = {}
|
||||
return
|
||||
|
||||
self.interpreter = Interpreter(
|
||||
model_path=model_path,
|
||||
num_threads=2,
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
# Suppress TFLite delegate creation messages that bypass Python logging
|
||||
with suppress_stderr_during("tflite_interpreter_init"):
|
||||
self.interpreter = Interpreter(
|
||||
model_path=model_path,
|
||||
num_threads=2,
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
self.labelmap = load_labels(labelmap_path, prefill=0)
|
||||
|
||||
@ -5,7 +5,7 @@ from typing_extensions import Literal
|
||||
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||
from frigate.log import redirect_output_to_logger
|
||||
from frigate.log import suppress_stderr_during
|
||||
|
||||
from ..detector_utils import tflite_detect_raw, tflite_init
|
||||
|
||||
@ -28,12 +28,13 @@ class CpuDetectorConfig(BaseDetectorConfig):
|
||||
class CpuTfl(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
|
||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||
def __init__(self, detector_config: CpuDetectorConfig):
|
||||
interpreter = Interpreter(
|
||||
model_path=detector_config.model.path,
|
||||
num_threads=detector_config.num_threads or 3,
|
||||
)
|
||||
# Suppress TFLite delegate creation messages that bypass Python logging
|
||||
with suppress_stderr_during("tflite_interpreter_init"):
|
||||
interpreter = Interpreter(
|
||||
model_path=detector_config.model.path,
|
||||
num_threads=detector_config.num_threads or 3,
|
||||
)
|
||||
|
||||
tflite_init(self, interpreter)
|
||||
|
||||
|
||||
@ -8,7 +8,7 @@ import numpy as np
|
||||
from frigate.const import MODEL_CACHE_DIR
|
||||
from frigate.detectors.detection_runners import get_optimized_runner
|
||||
from frigate.embeddings.types import EnrichmentModelTypeEnum
|
||||
from frigate.log import redirect_output_to_logger
|
||||
from frigate.log import suppress_stderr_during
|
||||
from frigate.util.downloader import ModelDownloader
|
||||
|
||||
from ...config import FaceRecognitionConfig
|
||||
@ -57,17 +57,18 @@ class FaceNetEmbedding(BaseEmbedding):
|
||||
self._load_model_and_utils()
|
||||
logger.debug(f"models are already downloaded for {self.model_name}")
|
||||
|
||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||
def _load_model_and_utils(self):
|
||||
if self.runner is None:
|
||||
if self.downloader:
|
||||
self.downloader.wait_for_download()
|
||||
|
||||
self.runner = Interpreter(
|
||||
model_path=os.path.join(MODEL_CACHE_DIR, "facedet/facenet.tflite"),
|
||||
num_threads=2,
|
||||
)
|
||||
self.runner.allocate_tensors()
|
||||
# Suppress TFLite delegate creation messages that bypass Python logging
|
||||
with suppress_stderr_during("tflite_interpreter_init"):
|
||||
self.runner = Interpreter(
|
||||
model_path=os.path.join(MODEL_CACHE_DIR, "facedet/facenet.tflite"),
|
||||
num_threads=2,
|
||||
)
|
||||
self.runner.allocate_tensors()
|
||||
self.tensor_input_details = self.runner.get_input_details()
|
||||
self.tensor_output_details = self.runner.get_output_details()
|
||||
|
||||
|
||||
@ -34,7 +34,7 @@ from frigate.data_processing.real_time.audio_transcription import (
|
||||
AudioTranscriptionRealTimeProcessor,
|
||||
)
|
||||
from frigate.ffmpeg_presets import parse_preset_input
|
||||
from frigate.log import LogPipe, redirect_output_to_logger
|
||||
from frigate.log import LogPipe, suppress_stderr_during
|
||||
from frigate.object_detection.base import load_labels
|
||||
from frigate.util.builtin import get_ffmpeg_arg_list
|
||||
from frigate.util.process import FrigateProcess
|
||||
@ -367,17 +367,17 @@ class AudioEventMaintainer(threading.Thread):
|
||||
|
||||
|
||||
class AudioTfl:
|
||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||
def __init__(self, stop_event: threading.Event, num_threads=2):
|
||||
self.stop_event = stop_event
|
||||
self.num_threads = num_threads
|
||||
self.labels = load_labels("/audio-labelmap.txt", prefill=521)
|
||||
self.interpreter = Interpreter(
|
||||
model_path="/cpu_audio_model.tflite",
|
||||
num_threads=self.num_threads,
|
||||
)
|
||||
|
||||
self.interpreter.allocate_tensors()
|
||||
# Suppress TFLite delegate creation messages that bypass Python logging
|
||||
with suppress_stderr_during("tflite_interpreter_init"):
|
||||
self.interpreter = Interpreter(
|
||||
model_path="/cpu_audio_model.tflite",
|
||||
num_threads=self.num_threads,
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user