mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-01-22 20:18:30 +03:00
Use thread lock for JinaV2 call as it sets multiple internal fields while being called
This commit is contained in:
parent
3c5eb1aee5
commit
25b36a1a7a
@ -3,6 +3,7 @@
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
import threading
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
@ -53,6 +54,11 @@ class JinaV2Embedding(BaseEmbedding):
|
||||
self.tokenizer = None
|
||||
self.image_processor = None
|
||||
self.runner = None
|
||||
|
||||
# Lock to prevent concurrent calls (text and vision share this instance)
|
||||
self._call_lock = threading.Lock()
|
||||
|
||||
# download the model and tokenizer
|
||||
files_names = list(self.download_urls.keys()) + [self.tokenizer_file]
|
||||
if not all(
|
||||
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
|
||||
@ -200,37 +206,40 @@ class JinaV2Embedding(BaseEmbedding):
|
||||
def __call__(
|
||||
self, inputs: list[str] | list[Image.Image] | list[str], embedding_type=None
|
||||
) -> list[np.ndarray]:
|
||||
self.embedding_type = embedding_type
|
||||
if not self.embedding_type:
|
||||
raise ValueError(
|
||||
"embedding_type must be specified either in __init__ or __call__"
|
||||
)
|
||||
# Lock the entire call to prevent race conditions when text and vision
|
||||
# embeddings are called concurrently from different threads
|
||||
with self._call_lock:
|
||||
self.embedding_type = embedding_type
|
||||
if not self.embedding_type:
|
||||
raise ValueError(
|
||||
"embedding_type must be specified either in __init__ or __call__"
|
||||
)
|
||||
|
||||
self._load_model_and_utils()
|
||||
processed = self._preprocess_inputs(inputs)
|
||||
batch_size = len(processed)
|
||||
self._load_model_and_utils()
|
||||
processed = self._preprocess_inputs(inputs)
|
||||
batch_size = len(processed)
|
||||
|
||||
# Prepare ONNX inputs with matching batch sizes
|
||||
onnx_inputs = {}
|
||||
if self.embedding_type == "text":
|
||||
onnx_inputs["input_ids"] = np.stack([x[0] for x in processed])
|
||||
onnx_inputs["pixel_values"] = np.zeros(
|
||||
(batch_size, 3, 512, 512), dtype=np.float32
|
||||
)
|
||||
elif self.embedding_type == "vision":
|
||||
onnx_inputs["input_ids"] = np.zeros((batch_size, 16), dtype=np.int64)
|
||||
onnx_inputs["pixel_values"] = np.stack([x[0] for x in processed])
|
||||
else:
|
||||
raise ValueError("Invalid embedding type")
|
||||
# Prepare ONNX inputs with matching batch sizes
|
||||
onnx_inputs = {}
|
||||
if self.embedding_type == "text":
|
||||
onnx_inputs["input_ids"] = np.stack([x[0] for x in processed])
|
||||
onnx_inputs["pixel_values"] = np.zeros(
|
||||
(batch_size, 3, 512, 512), dtype=np.float32
|
||||
)
|
||||
elif self.embedding_type == "vision":
|
||||
onnx_inputs["input_ids"] = np.zeros((batch_size, 16), dtype=np.int64)
|
||||
onnx_inputs["pixel_values"] = np.stack([x[0] for x in processed])
|
||||
else:
|
||||
raise ValueError("Invalid embedding type")
|
||||
|
||||
# Run inference
|
||||
outputs = self.runner.run(onnx_inputs)
|
||||
if self.embedding_type == "text":
|
||||
embeddings = outputs[2] # text embeddings
|
||||
elif self.embedding_type == "vision":
|
||||
embeddings = outputs[3] # image embeddings
|
||||
else:
|
||||
raise ValueError("Invalid embedding type")
|
||||
# Run inference
|
||||
outputs = self.runner.run(onnx_inputs)
|
||||
if self.embedding_type == "text":
|
||||
embeddings = outputs[2] # text embeddings
|
||||
elif self.embedding_type == "vision":
|
||||
embeddings = outputs[3] # image embeddings
|
||||
else:
|
||||
raise ValueError("Invalid embedding type")
|
||||
|
||||
embeddings = self._postprocess_outputs(embeddings)
|
||||
return [embedding for embedding in embeddings]
|
||||
embeddings = self._postprocess_outputs(embeddings)
|
||||
return [embedding for embedding in embeddings]
|
||||
|
||||
Loading…
Reference in New Issue
Block a user