Classification improvements (#20665)
Some checks are pending
CI / AMD64 Build (push) Waiting to run
CI / ARM Build (push) Waiting to run
CI / Jetson Jetpack 6 (push) Waiting to run
CI / AMD64 Extra Build (push) Blocked by required conditions
CI / ARM Extra Build (push) Blocked by required conditions
CI / Synaptics Build (push) Blocked by required conditions
CI / Assemble and push default build (push) Blocked by required conditions

* Don't classify objects that are ended

* Use weighted scoring for object classification

* Implement state verification
This commit is contained in:
Nicolas Mowen 2025-10-25 16:15:49 -06:00 committed by GitHub
parent 63042b9c08
commit 1fb21a4dac
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -53,6 +53,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
self.tensor_output_details: dict[str, Any] | None = None
self.labelmap: dict[int, str] = {}
self.classifications_per_second = EventsPerSecond()
self.state_history: dict[str, dict[str, Any]] = {}
if (
self.metrics
@ -94,6 +95,42 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
if self.inference_speed:
self.inference_speed.update(duration)
def verify_state_change(self, camera: str, detected_state: str) -> str | None:
"""
Verify state change requires 3 consecutive identical states before publishing.
Returns state to publish or None if verification not complete.
"""
if camera not in self.state_history:
self.state_history[camera] = {
"current_state": None,
"pending_state": None,
"consecutive_count": 0,
}
verification = self.state_history[camera]
if detected_state == verification["current_state"]:
verification["pending_state"] = None
verification["consecutive_count"] = 0
return None
if detected_state == verification["pending_state"]:
verification["consecutive_count"] += 1
if verification["consecutive_count"] >= 3:
verification["current_state"] = detected_state
verification["pending_state"] = None
verification["consecutive_count"] = 0
return detected_state
else:
verification["pending_state"] = detected_state
verification["consecutive_count"] = 1
logger.debug(
f"New state '{detected_state}' detected for {camera}, need {3 - verification['consecutive_count']} more consecutive detections"
)
return None
def process_frame(self, frame_data: dict[str, Any], frame: np.ndarray):
if self.metrics and self.model_config.name in self.metrics.classification_cps:
self.metrics.classification_cps[
@ -131,6 +168,19 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
self.last_run = now
should_run = True
# Shortcut: always run if we have a pending state verification to complete
if (
not should_run
and camera in self.state_history
and self.state_history[camera]["pending_state"] is not None
and now > self.last_run + 0.5
):
self.last_run = now
should_run = True
logger.debug(
f"Running verification check for pending state: {self.state_history[camera]['pending_state']} ({self.state_history[camera]['consecutive_count']}/3)"
)
if not should_run:
return
@ -188,10 +238,19 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
score,
)
if score >= self.model_config.threshold:
if score < self.model_config.threshold:
logger.debug(
f"Score {score} below threshold {self.model_config.threshold}, skipping verification"
)
return
detected_state = self.labelmap[best_id]
verified_state = self.verify_state_change(camera, detected_state)
if verified_state is not None:
self.requestor.send_data(
f"{camera}/classification/{self.model_config.name}",
self.labelmap[best_id],
verified_state,
)
def handle_request(self, topic, request_data):
@ -230,7 +289,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
self.sub_label_publisher = sub_label_publisher
self.tensor_input_details: dict[str, Any] | None = None
self.tensor_output_details: dict[str, Any] | None = None
self.detected_objects: dict[str, float] = {}
self.classification_history: dict[str, list[tuple[str, float, float]]] = {}
self.labelmap: dict[int, str] = {}
self.classifications_per_second = EventsPerSecond()
@ -272,6 +331,56 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
if self.inference_speed:
self.inference_speed.update(duration)
def get_weighted_score(
self,
object_id: str,
current_label: str,
current_score: float,
current_time: float,
) -> tuple[str | None, float]:
"""
Determine weighted score based on history to prevent false positives/negatives.
Requires 60% of attempts to agree on a label before publishing.
Returns (weighted_label, weighted_score) or (None, 0.0) if no weighted score.
"""
if object_id not in self.classification_history:
self.classification_history[object_id] = []
self.classification_history[object_id].append(
(current_label, current_score, current_time)
)
history = self.classification_history[object_id]
if len(history) < 3:
return None, 0.0
label_counts = {}
label_scores = {}
total_attempts = len(history)
for label, score, timestamp in history:
if label not in label_counts:
label_counts[label] = 0
label_scores[label] = []
label_counts[label] += 1
label_scores[label].append(score)
best_label = max(label_counts, key=label_counts.get)
best_count = label_counts[best_label]
consensus_threshold = total_attempts * 0.6
if best_count < consensus_threshold:
return None, 0.0
avg_score = sum(label_scores[best_label]) / len(label_scores[best_label])
if best_label == "none":
return None, 0.0
return best_label, avg_score
def process_frame(self, obj_data, frame):
if self.metrics and self.model_config.name in self.metrics.classification_cps:
self.metrics.classification_cps[
@ -284,6 +393,9 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
if obj_data["label"] not in self.model_config.object_config.objects:
return
if obj_data.get("end_time") is not None:
return
now = datetime.datetime.now().timestamp()
x, y, x2, y2 = calculate_region(
frame.shape,
@ -331,7 +443,6 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
probs = res / res.sum(axis=0)
best_id = np.argmax(probs)
score = round(probs[best_id], 2)
previous_score = self.detected_objects.get(obj_data["id"], 0.0)
self.__update_metrics(datetime.datetime.now().timestamp() - now)
write_classification_attempt(
@ -347,30 +458,34 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
logger.debug(f"Score {score} is less than threshold.")
return
if score <= previous_score:
logger.debug(f"Score {score} is worse than previous score {previous_score}")
return
sub_label = self.labelmap[best_id]
self.detected_objects[obj_data["id"]] = score
if (
self.model_config.object_config.classification_type
== ObjectClassificationType.sub_label
):
if sub_label != "none":
consensus_label, consensus_score = self.get_weighted_score(
obj_data["id"], sub_label, score, now
)
if consensus_label is not None:
if (
self.model_config.object_config.classification_type
== ObjectClassificationType.sub_label
):
self.sub_label_publisher.publish(
(obj_data["id"], sub_label, score),
(obj_data["id"], consensus_label, consensus_score),
EventMetadataTypeEnum.sub_label,
)
elif (
self.model_config.object_config.classification_type
== ObjectClassificationType.attribute
):
self.sub_label_publisher.publish(
(obj_data["id"], self.model_config.name, sub_label, score),
EventMetadataTypeEnum.attribute.value,
)
elif (
self.model_config.object_config.classification_type
== ObjectClassificationType.attribute
):
self.sub_label_publisher.publish(
(
obj_data["id"],
self.model_config.name,
consensus_label,
consensus_score,
),
EventMetadataTypeEnum.attribute.value,
)
def handle_request(self, topic, request_data):
if topic == EmbeddingsRequestEnum.reload_classification_model.value:
@ -388,8 +503,8 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
return None
def expire_object(self, object_id, camera):
if object_id in self.detected_objects:
self.detected_objects.pop(object_id)
if object_id in self.classification_history:
self.classification_history.pop(object_id)
@staticmethod