renamed frigate.detectors.yolo_utils.py -> frigate.detectors.util.py

This commit is contained in:
Indrek Mandre 2024-02-09 15:58:30 +02:00
parent e7da205fb7
commit 146aee709e
3 changed files with 7 additions and 8 deletions

View File

@ -7,12 +7,11 @@ import ctypes
from pydantic import Field from pydantic import Field
from typing_extensions import Literal from typing_extensions import Literal
import glob import glob
import cv2
from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig from frigate.detectors.detector_config import BaseDetectorConfig
import frigate.detectors.yolo_utils as yolo_utils from frigate.detectors.util import preprocess, yolov8_postprocess
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -40,7 +39,7 @@ class ONNXDetector(DetectionApi):
if detector_config.model.input_pixel_format != 'rgb': if detector_config.model.input_pixel_format != 'rgb':
logger.warn("ONNX: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!") logger.warn("ONNX: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!")
assert detector_config.model.path is not None, "ONNX: no model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/*.onnx")) + " and " + ', '.join(glob.glob("/*_labels.txt")) assert detector_config.model.path is not None, "ONNX: No model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/config/model_cache/yolov8/*.onnx")) + " and " + ', '.join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
path = detector_config.model.path path = detector_config.model.path
logger.info(f"ONNX: loading {detector_config.model.path}") logger.info(f"ONNX: loading {detector_config.model.path}")
@ -51,9 +50,9 @@ class ONNXDetector(DetectionApi):
model_input_name = self.model.get_inputs()[0].name model_input_name = self.model.get_inputs()[0].name
model_input_shape = self.model.get_inputs()[0].shape model_input_shape = self.model.get_inputs()[0].shape
tensor_input = yolo_utils.preprocess(tensor_input, model_input_shape, np.float32) tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
tensor_output = self.model.run(None, {model_input_name: tensor_input})[0] tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output) return yolov8_postprocess(model_input_shape, tensor_output)

View File

@ -12,7 +12,7 @@ import subprocess
from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig from frigate.detectors.detector_config import BaseDetectorConfig
import frigate.detectors.yolo_utils as yolo_utils from frigate.detectors.util import preprocess, yolov8_postprocess
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -102,12 +102,12 @@ class ROCmDetector(DetectionApi):
model_input_name = self.model.get_parameter_names()[0]; model_input_name = self.model.get_parameter_names()[0];
model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens()); model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
tensor_input = yolo_utils.preprocess(tensor_input, model_input_shape, np.float32) tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
detector_result = self.model.run({model_input_name: tensor_input})[0] detector_result = self.model.run({model_input_name: tensor_input})[0]
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float)) addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens()) tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens())
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output) return yolov8_postprocess(model_input_shape, tensor_output)