mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-08 12:15:25 +03:00
renamed frigate.detectors.yolo_utils.py -> frigate.detectors.util.py
This commit is contained in:
parent
e7da205fb7
commit
146aee709e
@ -7,12 +7,11 @@ import ctypes
|
|||||||
from pydantic import Field
|
from pydantic import Field
|
||||||
from typing_extensions import Literal
|
from typing_extensions import Literal
|
||||||
import glob
|
import glob
|
||||||
import cv2
|
|
||||||
|
|
||||||
from frigate.detectors.detection_api import DetectionApi
|
from frigate.detectors.detection_api import DetectionApi
|
||||||
from frigate.detectors.detector_config import BaseDetectorConfig
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||||
|
|
||||||
import frigate.detectors.yolo_utils as yolo_utils
|
from frigate.detectors.util import preprocess, yolov8_postprocess
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -40,7 +39,7 @@ class ONNXDetector(DetectionApi):
|
|||||||
if detector_config.model.input_pixel_format != 'rgb':
|
if detector_config.model.input_pixel_format != 'rgb':
|
||||||
logger.warn("ONNX: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!")
|
logger.warn("ONNX: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!")
|
||||||
|
|
||||||
assert detector_config.model.path is not None, "ONNX: no model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/*.onnx")) + " and " + ', '.join(glob.glob("/*_labels.txt"))
|
assert detector_config.model.path is not None, "ONNX: No model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/config/model_cache/yolov8/*.onnx")) + " and " + ', '.join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
|
||||||
|
|
||||||
path = detector_config.model.path
|
path = detector_config.model.path
|
||||||
logger.info(f"ONNX: loading {detector_config.model.path}")
|
logger.info(f"ONNX: loading {detector_config.model.path}")
|
||||||
@ -51,9 +50,9 @@ class ONNXDetector(DetectionApi):
|
|||||||
model_input_name = self.model.get_inputs()[0].name
|
model_input_name = self.model.get_inputs()[0].name
|
||||||
model_input_shape = self.model.get_inputs()[0].shape
|
model_input_shape = self.model.get_inputs()[0].shape
|
||||||
|
|
||||||
tensor_input = yolo_utils.preprocess(tensor_input, model_input_shape, np.float32)
|
tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
|
||||||
|
|
||||||
tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
|
tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
|
||||||
|
|
||||||
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)
|
return yolov8_postprocess(model_input_shape, tensor_output)
|
||||||
|
|
||||||
|
|||||||
@ -12,7 +12,7 @@ import subprocess
|
|||||||
from frigate.detectors.detection_api import DetectionApi
|
from frigate.detectors.detection_api import DetectionApi
|
||||||
from frigate.detectors.detector_config import BaseDetectorConfig
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||||
|
|
||||||
import frigate.detectors.yolo_utils as yolo_utils
|
from frigate.detectors.util import preprocess, yolov8_postprocess
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -102,12 +102,12 @@ class ROCmDetector(DetectionApi):
|
|||||||
model_input_name = self.model.get_parameter_names()[0];
|
model_input_name = self.model.get_parameter_names()[0];
|
||||||
model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
|
model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
|
||||||
|
|
||||||
tensor_input = yolo_utils.preprocess(tensor_input, model_input_shape, np.float32)
|
tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
|
||||||
|
|
||||||
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
||||||
|
|
||||||
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
|
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
|
||||||
tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens())
|
tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens())
|
||||||
|
|
||||||
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)
|
return yolov8_postprocess(model_input_shape, tensor_output)
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user