Make object classification publish to tracked object update and add examples for state classification

This commit is contained in:
Nicolas Mowen 2025-11-22 11:51:27 -07:00
parent bb844e43c2
commit 11ca1baddd
4 changed files with 76 additions and 1 deletions

View File

@ -159,11 +159,44 @@ Message published for updates to tracked object metadata, for example:
}
```
#### Object Classification Update
Message published when [object classification](/configuration/custom_classification/object_classification) reaches consensus on a classification result.
**Sub label type:**
```json
{
"type": "classification",
"id": "1607123955.475377-mxklsc",
"camera": "front_door_cam",
"timestamp": 1607123958.748393,
"model": "person_classifier",
"sub_label": "delivery_person",
"score": 0.87
}
```
**Attribute type:**
```json
{
"type": "classification",
"id": "1607123955.475377-mxklsc",
"camera": "front_door_cam",
"timestamp": 1607123958.748393,
"model": "helmet_detector",
"attribute": "yes",
"score": 0.92
}
```
### `frigate/reviews`
Message published for each changed review item. The first message is published when the `detection` or `alert` is initiated.
An `update` with the same ID will be published when:
- The severity changes from `detection` to `alert`
- Additional objects are detected
- An object is recognized via face, lpr, etc.
@ -308,6 +341,11 @@ Publishes transcribed text for audio detected on this camera.
**NOTE:** Requires audio detection and transcription to be enabled
### `frigate/<camera_name>/classification/<model_name>`
Publishes the current state detected by a state classification model for the camera. The topic name includes the model name as configured in your classification settings.
The published value is the detected state class name (e.g., `open`, `closed`, `on`, `off`). The state is only published when it changes, helping to reduce unnecessary MQTT traffic.
### `frigate/<camera_name>/enabled/set`
Topic to turn Frigate's processing of a camera on and off. Expected values are `ON` and `OFF`.

View File

@ -1,6 +1,7 @@
"""Real time processor that works with classification tflite models."""
import datetime
import json
import logging
import os
from typing import Any
@ -21,6 +22,7 @@ from frigate.config.classification import (
)
from frigate.const import CLIPS_DIR, MODEL_CACHE_DIR
from frigate.log import redirect_output_to_logger
from frigate.types import TrackedObjectUpdateTypesEnum
from frigate.util.builtin import EventsPerSecond, InferenceSpeed, load_labels
from frigate.util.object import box_overlaps, calculate_region
@ -284,6 +286,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
config: FrigateConfig,
model_config: CustomClassificationConfig,
sub_label_publisher: EventMetadataPublisher,
requestor: InterProcessRequestor,
metrics: DataProcessorMetrics,
):
super().__init__(config, metrics)
@ -292,6 +295,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
self.interpreter: Interpreter | None = None
self.sub_label_publisher = sub_label_publisher
self.requestor = requestor
self.tensor_input_details: dict[str, Any] | None = None
self.tensor_output_details: dict[str, Any] | None = None
self.classification_history: dict[str, list[tuple[str, float, float]]] = {}
@ -486,6 +490,8 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
)
if consensus_label is not None:
camera = obj_data["camera"]
if (
self.model_config.object_config.classification_type
== ObjectClassificationType.sub_label
@ -494,6 +500,20 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
(object_id, consensus_label, consensus_score),
EventMetadataTypeEnum.sub_label,
)
self.requestor.send_data(
"tracked_object_update",
json.dumps(
{
"type": TrackedObjectUpdateTypesEnum.classification,
"id": object_id,
"camera": camera,
"timestamp": now,
"model": self.model_config.name,
"sub_label": consensus_label,
"score": consensus_score,
}
),
)
elif (
self.model_config.object_config.classification_type
== ObjectClassificationType.attribute
@ -507,6 +527,20 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
),
EventMetadataTypeEnum.attribute.value,
)
self.requestor.send_data(
"tracked_object_update",
json.dumps(
{
"type": TrackedObjectUpdateTypesEnum.classification,
"id": object_id,
"camera": camera,
"timestamp": now,
"model": self.model_config.name,
"attribute": consensus_label,
"score": consensus_score,
}
),
)
def handle_request(self, topic, request_data):
if topic == EmbeddingsRequestEnum.reload_classification_model.value:

View File

@ -195,6 +195,7 @@ class EmbeddingMaintainer(threading.Thread):
self.config,
model_config,
self.event_metadata_publisher,
self.requestor,
self.metrics,
)
)
@ -339,6 +340,7 @@ class EmbeddingMaintainer(threading.Thread):
self.config,
model_config,
self.event_metadata_publisher,
self.requestor,
self.metrics,
)

View File

@ -30,3 +30,4 @@ class TrackedObjectUpdateTypesEnum(str, Enum):
description = "description"
face = "face"
lpr = "lpr"
classification = "classification"