mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-05 18:55:23 +03:00
Start audio process
This commit is contained in:
parent
386e388f75
commit
10e194b0d1
@ -29,6 +29,7 @@ from frigate.const import (
|
||||
MODEL_CACHE_DIR,
|
||||
RECORD_DIR,
|
||||
)
|
||||
from frigate.events.audio import listen_to_audio
|
||||
from frigate.events.cleanup import EventCleanup
|
||||
from frigate.events.external import ExternalEventProcessor
|
||||
from frigate.events.maintainer import EventProcessor
|
||||
@ -390,6 +391,14 @@ class FrigateApp:
|
||||
capture_process.start()
|
||||
logger.info(f"Capture process started for {name}: {capture_process.pid}")
|
||||
|
||||
def start_audio_processors(self) -> None:
|
||||
audio_process = mp.Process(
|
||||
target=listen_to_audio,
|
||||
name=f"audio_capture",
|
||||
args=(self.config, self.event_queue)
|
||||
)
|
||||
logger.info(f"Audio process started: {audio_process.pid}")
|
||||
|
||||
def start_timeline_processor(self) -> None:
|
||||
self.timeline_processor = TimelineProcessor(
|
||||
self.config, self.timeline_queue, self.stop_event
|
||||
@ -486,6 +495,7 @@ class FrigateApp:
|
||||
self.start_detected_frames_processor()
|
||||
self.start_camera_processors()
|
||||
self.start_camera_capture_processes()
|
||||
self.start_audio_processors()
|
||||
self.start_storage_maintainer()
|
||||
self.init_stats()
|
||||
self.init_external_event_processor()
|
||||
|
||||
@ -1,75 +0,0 @@
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
from pydantic import Field
|
||||
from typing_extensions import Literal
|
||||
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.object_detection import load_labels
|
||||
|
||||
try:
|
||||
from tflite_runtime.interpreter import Interpreter
|
||||
except ModuleNotFoundError:
|
||||
from tensorflow.lite.python.interpreter import Interpreter
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "audio"
|
||||
|
||||
|
||||
class AudioTfl(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
|
||||
def __init__(self, labels):
|
||||
self.labels = load_labels("/audio-labelmap.txt")
|
||||
self.interpreter = Interpreter(
|
||||
model_path="/cpu_audio_model.tflite",
|
||||
num_threads=2,
|
||||
)
|
||||
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
def _detect_raw(self, tensor_input):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
res = self.interpreter.get_tensor(self.tensor_output_details[0]["index"])[0]
|
||||
non_zero_indices = res > 0
|
||||
class_ids = np.argpartition(-res, 20)[:20]
|
||||
class_ids = class_ids[np.argsort(-res[class_ids])]
|
||||
class_ids = class_ids[non_zero_indices[class_ids]]
|
||||
scores = res[class_ids]
|
||||
boxes = np.full((scores.shape[0], 4), -1, np.float32)
|
||||
count = len(scores)
|
||||
|
||||
for i in range(count):
|
||||
if scores[i] < 0.4 or i == 20:
|
||||
break
|
||||
detections[i] = [
|
||||
class_ids[i],
|
||||
float(scores[i]),
|
||||
boxes[i][0],
|
||||
boxes[i][1],
|
||||
boxes[i][2],
|
||||
boxes[i][3],
|
||||
]
|
||||
|
||||
return detections
|
||||
|
||||
def detect(self, tensor_input, threshold=0.8):
|
||||
detections = []
|
||||
|
||||
raw_detections = self._detect_raw(tensor_input)
|
||||
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append(
|
||||
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
||||
)
|
||||
return detections
|
||||
@ -19,9 +19,15 @@ from frigate.const import (
|
||||
AUDIO_SAMPLE_RATE,
|
||||
CACHE_DIR,
|
||||
)
|
||||
from frigate.detectors.plugins.audio_tfl import AudioTfl
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.object_detection import load_labels
|
||||
from frigate.util import listen
|
||||
|
||||
try:
|
||||
from tflite_runtime.interpreter import Interpreter
|
||||
except ModuleNotFoundError:
|
||||
from tensorflow.lite.python.interpreter import Interpreter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
FFMPEG_COMMAND = (
|
||||
@ -47,6 +53,61 @@ def listen_to_audio(config: FrigateConfig, event_queue: mp.Queue) -> None:
|
||||
AudioEventMaintainer(camera, stop_event)
|
||||
|
||||
|
||||
class AudioTfl(DetectionApi):
|
||||
def __init__(self, labels):
|
||||
self.labels = load_labels("/audio-labelmap.txt")
|
||||
self.interpreter = Interpreter(
|
||||
model_path="/cpu_audio_model.tflite",
|
||||
num_threads=2,
|
||||
)
|
||||
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
def _detect_raw(self, tensor_input):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
res = self.interpreter.get_tensor(self.tensor_output_details[0]["index"])[0]
|
||||
non_zero_indices = res > 0
|
||||
class_ids = np.argpartition(-res, 20)[:20]
|
||||
class_ids = class_ids[np.argsort(-res[class_ids])]
|
||||
class_ids = class_ids[non_zero_indices[class_ids]]
|
||||
scores = res[class_ids]
|
||||
boxes = np.full((scores.shape[0], 4), -1, np.float32)
|
||||
count = len(scores)
|
||||
|
||||
for i in range(count):
|
||||
if scores[i] < 0.4 or i == 20:
|
||||
break
|
||||
detections[i] = [
|
||||
class_ids[i],
|
||||
float(scores[i]),
|
||||
boxes[i][0],
|
||||
boxes[i][1],
|
||||
boxes[i][2],
|
||||
boxes[i][3],
|
||||
]
|
||||
|
||||
return detections
|
||||
|
||||
def detect(self, tensor_input, threshold=0.8):
|
||||
detections = []
|
||||
|
||||
raw_detections = self._detect_raw(tensor_input)
|
||||
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append(
|
||||
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
||||
)
|
||||
return detections
|
||||
|
||||
|
||||
class AudioEventMaintainer(threading.Thread):
|
||||
def __init__(self, camera: CameraConfig, stop_event: mp.Event) -> None:
|
||||
threading.Thread.__init__(self)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user