frigate/docker/rocm/migraphx/targets/gpu/prepare_reduce.cpp

123 lines
3.8 KiB
C++
Raw Normal View History

2025-02-04 00:44:02 +03:00
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include <migraphx/gpu/prepare_reduce.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/register_op.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct parallel_reduce
{
operation op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.op, "op"));
}
std::string name() const { return "gpu::parallel_reduce"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
std::vector<shape> result;
std::transform(inputs.begin(), inputs.end(), std::back_inserter(result), [&](auto input) {
return op.compute_shape({input});
});
return shape{result};
}
};
MIGRAPHX_REGISTER_OP(parallel_reduce);
namespace {
std::vector<instruction_ref> find_reduce(module& m)
{
std::vector<instruction_ref> result;
auto im = iterator_for(m);
std::copy_if(im.begin(), im.end(), std::back_inserter(result), [](auto ins) {
if(contains({"gpu::parallel_reduce", "reduce_mean"}, ins->name()))
return false;
return contains(ins->name(), "reduce");
});
return result;
}
std::vector<instruction_ref> find_parallel_reduce(const std::vector<instruction_ref>& r)
{
std::vector<instruction_ref> result;
auto ir = iterator_for(r);
transform_if(
ir.begin(),
ir.end(),
std::back_inserter(result),
[&](auto x) {
return std::none_of(
std::next(x), r.end(), [&](auto reduce) { return reaches(*x, reduce); });
},
[](auto x) { return *x; });
return result;
}
void fuse_reductions(module& m)
{
auto rs = find_parallel_reduce(find_reduce(m));
if(rs.size() < 2)
return;
// Only handle the same reduction operator for now
if(std::any_of(std::next(rs.begin()), rs.end(), [&](auto r) {
return rs.front()->name() != r->name();
}))
return;
auto last = rs.front();
auto op = last->get_operator();
std::vector<instruction_ref> inputs;
std::transform(rs.begin(), rs.end(), std::back_inserter(inputs), [&](auto r) {
return r->inputs().front();
});
auto pr = m.insert_instruction(last, parallel_reduce{op}, inputs);
int i = 0;
for(auto r : rs)
{
m.replace_instruction(r, make_op("get_tuple_elem", {{"index", i}}), pr);
i++;
}
m.sort();
}
} // namespace
void prepare_reduce::apply(module& m) const { fuse_reductions(m); }
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx