frigate/frigate/detectors/plugins/edgetpu_tfl.py

362 lines
15 KiB
Python
Raw Normal View History

import logging
import math
2025-03-16 14:01:15 +03:00
import os
import cv2
import numpy as np
from pydantic import Field
from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
try:
from tflite_runtime.interpreter import Interpreter, load_delegate
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter, load_delegate
logger = logging.getLogger(__name__)
DETECTOR_KEY = "edgetpu"
class EdgeTpuDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default=None, title="Device Type")
class EdgeTpuTfl(DetectionApi):
type_key = DETECTOR_KEY
supported_models = [
ModelTypeEnum.ssd,
ModelTypeEnum.yologeneric,
]
def __init__(self, detector_config: EdgeTpuDetectorConfig):
device_config = {}
if detector_config.device is not None:
device_config = {"device": detector_config.device}
edge_tpu_delegate = None
try:
device_type = (
device_config["device"] if "device" in device_config else "auto"
)
logger.info(f"Attempting to load TPU as {device_type}")
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
logger.info("TPU found")
self.interpreter = Interpreter(
model_path=detector_config.model.path,
experimental_delegates=[edge_tpu_delegate],
)
except ValueError:
2025-03-16 14:01:15 +03:00
_, ext = os.path.splitext(detector_config.model.path)
if ext and ext != ".tflite":
logger.error(
"Incorrect model used with EdgeTPU. Only .tflite models can be used with a Coral EdgeTPU."
)
else:
logger.error(
"No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
)
raise
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
self.model_width = detector_config.model.width
self.model_height = detector_config.model.height
self.min_score = 0.4
self.max_detections = 20
self.model_type = detector_config.model.model_type
self.model_requires_int8 = self.tensor_input_details[0]["dtype"] == np.int8
if self.model_type == ModelTypeEnum.yologeneric:
logger.debug("Using YOLO preprocessing/postprocessing")
if len(self.tensor_output_details) not in [2, 3]:
logger.error(
f"Invalid count of output tensors in YOLO model. Found {len(self.tensor_output_details)}, expecting 2 or 3."
)
raise
self.reg_max = 16 # = 64 dfl_channels // 4 # YOLO standard
self.min_logit_value = np.log(
self.min_score / (1 - self.min_score)
) # for filtering
self._generate_anchors_and_strides() # decode bounding box DFL
self.project = np.arange(
self.reg_max, dtype=np.float32
) # for decoding bounding box DFL information
# Determine YOLO tensor indices and quantization scales for
# boxes and class_scores the tensor ordering and names are
# not reliable, so use tensor shape to detect which tensor
# holds boxes or class scores.
# The tensors have shapes (B, N, C)
# where N is the number of candidates (=2100 for 320x320)
# this may guess wrong if the number of classes is exactly 64
output_boxes_index = None
output_classes_index = None
for i, x in enumerate(self.tensor_output_details):
# the nominal index seems to start at 1 instead of 0
if len(x["shape"]) == 3 and x["shape"][2] == 64:
output_boxes_index = i
elif len(x["shape"]) == 3 and x["shape"][2] > 1:
# require the number of classes to be more than 1
# to differentiate from (not used) max score tensor
output_classes_index = i
if output_boxes_index is None or output_classes_index is None:
logger.warning("Unrecognized model output, unexpected tensor shapes.")
output_classes_index = (
0
if (output_boxes_index is None or output_classes_index == 1)
else 1
) # 0 is default guess
output_boxes_index = 1 if (output_boxes_index == 0) else 0
scores_details = self.tensor_output_details[output_classes_index]
self.scores_tensor_index = scores_details["index"]
self.scores_scale, self.scores_zero_point = scores_details["quantization"]
# calculate the quantized version of the min_score
self.min_score_quantized = int(
(self.min_logit_value / self.scores_scale) + self.scores_zero_point
)
self.logit_shift_to_positive_values = (
max(0, math.ceil((128 + self.scores_zero_point) * self.scores_scale))
+ 1
) # round up
boxes_details = self.tensor_output_details[output_boxes_index]
self.boxes_tensor_index = boxes_details["index"]
self.boxes_scale, self.boxes_zero_point = boxes_details["quantization"]
elif self.model_type == ModelTypeEnum.ssd:
logger.debug("Using SSD preprocessing/postprocessing")
# SSD model indices (4 outputs: boxes, class_ids, scores, count)
for x in self.tensor_output_details:
if len(x["shape"]) == 3:
self.output_boxes_index = x["index"]
elif len(x["shape"]) == 1:
self.output_count_index = x["index"]
self.output_class_ids_index = None
self.output_class_scores_index = None
else:
raise Exception(
f"{self.model_type} is currently not supported for edgetpu. See the docs for more info on supported models."
)
def _generate_anchors_and_strides(self):
# for decoding the bounding box DFL information into xy coordinates
all_anchors = []
all_strides = []
strides = (8, 16, 32) # YOLO's small, medium, large detection heads
for stride in strides:
feat_h, feat_w = self.model_height // stride, self.model_width // stride
grid_y, grid_x = np.meshgrid(
np.arange(feat_h, dtype=np.float32),
np.arange(feat_w, dtype=np.float32),
indexing="ij",
)
grid_coords = np.stack((grid_x.flatten(), grid_y.flatten()), axis=1)
anchor_points = grid_coords + 0.5
all_anchors.append(anchor_points)
all_strides.append(np.full((feat_h * feat_w, 1), stride, dtype=np.float32))
self.anchors = np.concatenate(all_anchors, axis=0)
self.anchor_strides = np.concatenate(all_strides, axis=0)
def determine_indexes_for_non_yolo_models(self):
"""Legacy method for SSD models."""
if (
self.output_class_ids_index is None
or self.output_class_scores_index is None
):
for i in range(4):
index = self.tensor_output_details[i]["index"]
if (
index != self.output_boxes_index
and index != self.output_count_index
):
if (
np.mod(np.float32(self.interpreter.tensor(index)()[0][0]), 1)
== 0.0
):
self.output_class_ids_index = index
else:
self.output_scores_index = index
def pre_process(self, tensor_input):
if self.model_requires_int8:
tensor_input = np.bitwise_xor(tensor_input, 128).view(
np.int8
) # shift by -128
return tensor_input
def detect_raw(self, tensor_input):
tensor_input = self.pre_process(tensor_input)
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
self.interpreter.invoke()
if self.model_type == ModelTypeEnum.yologeneric:
# Multi-tensor YOLO model with (non-standard B(H*W)C output format).
# (the comments indicate the shape of tensors,
# using "2100" as the anchor count (for image size of 320x320),
# "NC" as number of classes,
# "N" as the count that survive after min-score filtering)
# TENSOR A) class scores (1, 2100, NC) with logit values
# TENSOR B) box coordinates (1, 2100, 64) encoded as dfl scores
# Recommend that the model clamp the logit values in tensor (A)
# to the range [-4,+4] to preserve precision from [2%,98%]
# and because NMS requires the min_score parameter to be >= 0
# don't dequantize scores data yet, wait until the low-confidence
# candidates are filtered out from the overall result set.
# This reduces the work and makes post-processing faster.
# this method works with raw quantized numbers when possible,
# which relies on the value of the scale factor to be >0.
# This speeds up max and argmax operations.
# Get max confidence for each detection and create the mask
detections = np.zeros(
(self.max_detections, 6), np.float32
) # initialize zero results
scores_output_quantized = self.interpreter.get_tensor(
self.scores_tensor_index
)[0] # (2100, NC)
max_scores_quantized = np.max(scores_output_quantized, axis=1) # (2100,)
mask = max_scores_quantized >= self.min_score_quantized # (2100,)
if not np.any(mask):
return detections # empty results
max_scores_filtered_shiftedpositive = (
(max_scores_quantized[mask] - self.scores_zero_point)
* self.scores_scale
) + self.logit_shift_to_positive_values # (N,1) shifted logit values
scores_output_quantized_filtered = scores_output_quantized[mask]
# dequantize boxes. NMS needs them to be in float format
# remove candidates with probabilities < threshold
boxes_output_quantized_filtered = (
self.interpreter.get_tensor(self.boxes_tensor_index)[0]
)[mask] # (N, 64)
boxes_output_filtered = (
boxes_output_quantized_filtered.astype(np.float32)
- self.boxes_zero_point
) * self.boxes_scale
# 2. Decode DFL to distances (ltrb)
dfl_distributions = boxes_output_filtered.reshape(
-1, 4, self.reg_max
) # (N, 4, 16)
# Softmax over the 16 bins
dfl_max = np.max(dfl_distributions, axis=2, keepdims=True)
dfl_exp = np.exp(dfl_distributions - dfl_max)
dfl_probs = dfl_exp / np.sum(dfl_exp, axis=2, keepdims=True) # (N, 4, 16)
# Weighted sum: (N, 4, 16) * (16,) -> (N, 4)
distances = np.einsum("pcr,r->pc", dfl_probs, self.project)
# Calculate box corners in pixel coordinates
anchors_filtered = self.anchors[mask]
anchor_strides_filtered = self.anchor_strides[mask]
x1y1 = (
anchors_filtered - distances[:, [0, 1]]
) * anchor_strides_filtered # (N, 2)
x2y2 = (
anchors_filtered + distances[:, [2, 3]]
) * anchor_strides_filtered # (N, 2)
boxes_filtered_decoded = np.concatenate((x1y1, x2y2), axis=-1) # (N, 4)
# 9. Apply NMS. Use logit scores here to defer sigmoid()
# until after filtering out redundant boxes
# Shift the logit scores to be non-negative (required by cv2)
indices = cv2.dnn.NMSBoxes(
bboxes=boxes_filtered_decoded,
scores=max_scores_filtered_shiftedpositive,
score_threshold=(
self.min_logit_value + self.logit_shift_to_positive_values
),
nms_threshold=0.4, # should this be a model config setting?
)
num_detections = len(indices)
if num_detections == 0:
return detections # empty results
nms_indices = np.array(indices, dtype=np.int32).ravel() # or .flatten()
if num_detections > self.max_detections:
nms_indices = nms_indices[: self.max_detections]
num_detections = self.max_detections
kept_logits_quantized = scores_output_quantized_filtered[nms_indices]
class_ids_post_nms = np.argmax(kept_logits_quantized, axis=1)
# Extract the final boxes and scores using fancy indexing
final_boxes = boxes_filtered_decoded[nms_indices]
final_scores_logits = (
max_scores_filtered_shiftedpositive[nms_indices]
- self.logit_shift_to_positive_values
) # Unshifted logits
# Detections array format: [class_id, score, ymin, xmin, ymax, xmax]
detections[:num_detections, 0] = class_ids_post_nms
detections[:num_detections, 1] = 1.0 / (
1.0 + np.exp(-final_scores_logits)
) # sigmoid
detections[:num_detections, 2] = final_boxes[:, 1] / self.model_height
detections[:num_detections, 3] = final_boxes[:, 0] / self.model_width
detections[:num_detections, 4] = final_boxes[:, 3] / self.model_height
detections[:num_detections, 5] = final_boxes[:, 2] / self.model_width
return detections
elif self.model_type == ModelTypeEnum.ssd:
self.determine_indexes_for_non_yolo_models()
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
class_ids = self.interpreter.tensor(
self.tensor_output_details[1]["index"]
)()[0]
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[
0
]
count = int(
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
)
detections = np.zeros((self.max_detections, 6), np.float32)
for i in range(count):
if scores[i] < self.min_score:
break
if i == self.max_detections:
logger.debug(f"Too many detections ({count})!")
break
detections[i] = [
class_ids[i],
float(scores[i]),
boxes[i][0],
boxes[i][1],
boxes[i][2],
boxes[i][3],
]
return detections
else:
raise Exception(
f"{self.model_type} is currently not supported for edgetpu. See the docs for more info on supported models."
)