frigate/docker/rocm/migraphx/tf/parse_batchnorm.cpp

78 lines
3.3 KiB
C++
Raw Normal View History

2025-02-04 00:44:02 +03:00
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/tf/op_parser.hpp>
#include <migraphx/tf/tf_parser.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace tf {
struct parse_batchnorm : op_parser<parse_batchnorm>
{
bool transpose() const { return true; }
std::vector<op_desc> operators() const { return {{"FusedBatchNorm"}, {"FusedBatchNormV3"}}; }
instruction_ref parse(const op_desc& /*opd*/,
const tf_parser& /*parser*/,
tf_parser::node_info info,
std::vector<instruction_ref> args) const
{
// different default epsilon than from ONNX
float epsilon = 1e-4f;
if(contains(info.attributes, "epsilon"))
{
epsilon = info.attributes.at("epsilon").f();
}
auto x_lens = args[0]->get_shape().lens();
auto x_type = args[0]->get_shape().type();
// unsqueeze tensors of shape (C) to broadcast correctly
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}});
auto scale_unsqueeze =
info.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), args[1]);
auto bias_unsqueeze =
info.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), args[2]);
auto mean_unsqueeze =
info.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), args[3]);
auto var_unsqueeze =
info.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), args[4]);
auto x_sub_mean = info.add_broadcastable_binary_op("sub", args[0], mean_unsqueeze);
auto var_eps = info.add_broadcastable_binary_op("add", var_unsqueeze, eps);
auto rsqrt = info.add_instruction(make_op("rsqrt"), var_eps);
auto mul0 = info.add_broadcastable_binary_op("mul", scale_unsqueeze, rsqrt);
auto r0 = info.add_broadcastable_binary_op("mul", x_sub_mean, mul0);
return info.add_broadcastable_binary_op("add", r0, bias_unsqueeze);
}
};
} // namespace tf
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx