mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 09:27:06 +03:00
157 lines
4.9 KiB
C++
157 lines
4.9 KiB
C++
|
|
/*
|
||
|
|
* The MIT License (MIT)
|
||
|
|
*
|
||
|
|
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
|
||
|
|
*
|
||
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
|
* in the Software without restriction, including without limitation the rights
|
||
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
|
* furnished to do so, subject to the following conditions:
|
||
|
|
*
|
||
|
|
* The above copyright notice and this permission notice shall be included in
|
||
|
|
* all copies or substantial portions of the Software.
|
||
|
|
*
|
||
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
|
* THE SOFTWARE.
|
||
|
|
*/
|
||
|
|
#include <migraphx/gpu/schedule_model.hpp>
|
||
|
|
#include <migraphx/gpu/context.hpp>
|
||
|
|
#include <migraphx/register_op.hpp>
|
||
|
|
#include <migraphx/program.hpp>
|
||
|
|
#include <migraphx/instruction.hpp>
|
||
|
|
#include <migraphx/operation.hpp>
|
||
|
|
|
||
|
|
namespace migraphx {
|
||
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
||
|
|
namespace gpu {
|
||
|
|
|
||
|
|
struct record_event
|
||
|
|
{
|
||
|
|
std::size_t event = 0;
|
||
|
|
template <class Self, class F>
|
||
|
|
static auto reflect(Self& self, F f)
|
||
|
|
{
|
||
|
|
return pack(f(self.event, "event"));
|
||
|
|
}
|
||
|
|
std::string name() const { return "gpu::record_event"; }
|
||
|
|
shape compute_shape(const std::vector<shape>&) const { return {}; }
|
||
|
|
|
||
|
|
argument compute(context& ctx, const shape&, const std::vector<argument>&) const
|
||
|
|
{
|
||
|
|
ctx.get_stream().record(ctx.get_event(event));
|
||
|
|
return {};
|
||
|
|
}
|
||
|
|
|
||
|
|
void finalize(context& ctx, const shape&, const std::vector<shape>&) const
|
||
|
|
{
|
||
|
|
ctx.create_events(event);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
struct wait_event
|
||
|
|
{
|
||
|
|
std::size_t event = 0;
|
||
|
|
template <class Self, class F>
|
||
|
|
static auto reflect(Self& self, F f)
|
||
|
|
{
|
||
|
|
return pack(f(self.event, "event"));
|
||
|
|
}
|
||
|
|
std::string name() const { return "gpu::wait_event"; }
|
||
|
|
shape compute_shape(const std::vector<shape>&) const { return {}; }
|
||
|
|
|
||
|
|
argument compute(context& ctx, const shape&, const std::vector<argument>&) const
|
||
|
|
{
|
||
|
|
ctx.get_stream().wait(ctx.get_event(event));
|
||
|
|
return {};
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
struct set_stream
|
||
|
|
{
|
||
|
|
std::size_t stream = 0;
|
||
|
|
template <class Self, class F>
|
||
|
|
static auto reflect(Self& self, F f)
|
||
|
|
{
|
||
|
|
return pack(f(self.stream, "stream"));
|
||
|
|
}
|
||
|
|
std::string name() const { return "gpu::set_stream"; }
|
||
|
|
shape compute_shape(const std::vector<shape>&) const { return {}; }
|
||
|
|
|
||
|
|
argument compute(context& ctx, const shape&, const std::vector<argument>&) const
|
||
|
|
{
|
||
|
|
ctx.set_stream(stream);
|
||
|
|
return {};
|
||
|
|
}
|
||
|
|
void finalize(context& ctx, const shape&, const std::vector<shape>&) const
|
||
|
|
{
|
||
|
|
ctx.set_stream(stream);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
MIGRAPHX_REGISTER_OP(record_event)
|
||
|
|
MIGRAPHX_REGISTER_OP(wait_event)
|
||
|
|
MIGRAPHX_REGISTER_OP(set_stream)
|
||
|
|
|
||
|
|
std::size_t schedule_model::concurrency() const { return streams; }
|
||
|
|
void schedule_model::sched(module& m, instruction_ref ins, std::size_t n) const
|
||
|
|
{
|
||
|
|
auto last_stream = std::find_if(std::make_reverse_iterator(ins),
|
||
|
|
std::make_reverse_iterator(m.begin()),
|
||
|
|
[&](auto&& i) { return i.name() == "gpu::set_stream"; });
|
||
|
|
if(last_stream != std::make_reverse_iterator(m.begin()))
|
||
|
|
{
|
||
|
|
auto&& op = any_cast<set_stream>(last_stream->get_operator());
|
||
|
|
// If the same stream was set earlier then skip
|
||
|
|
if(op.stream == n)
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
m.insert_instruction(ins, set_stream{n});
|
||
|
|
}
|
||
|
|
|
||
|
|
void schedule_model::wait(module& m, instruction_ref ins, std::size_t wait_id) const
|
||
|
|
{
|
||
|
|
m.insert_instruction(ins, wait_event{wait_id});
|
||
|
|
}
|
||
|
|
void schedule_model::record(module& m, instruction_ref ins, std::size_t wait_id) const
|
||
|
|
{
|
||
|
|
m.insert_instruction(std::next(ins), record_event{wait_id});
|
||
|
|
}
|
||
|
|
|
||
|
|
static std::unordered_map<std::string, std::size_t> create_weight_map()
|
||
|
|
{
|
||
|
|
return {{"hip::load_literal", 0},
|
||
|
|
{"hip::hip_allocate_memory", 0},
|
||
|
|
{"hip::hip_load_memory", 0},
|
||
|
|
{"hip::allocate", 0},
|
||
|
|
{"gpu::convolution", 8},
|
||
|
|
{"gpu::conv_bias_relu", 8},
|
||
|
|
{"gpu::pooling", 4},
|
||
|
|
{"gpu::gemm", 4}};
|
||
|
|
}
|
||
|
|
|
||
|
|
static const std::unordered_map<std::string, std::size_t>& weight_map()
|
||
|
|
{
|
||
|
|
static const std::unordered_map<std::string, std::size_t> m = create_weight_map();
|
||
|
|
return m;
|
||
|
|
}
|
||
|
|
|
||
|
|
std::size_t schedule_model::weight(const operation& op) const
|
||
|
|
{
|
||
|
|
if(weight_map().count(op.name()) == 0)
|
||
|
|
{
|
||
|
|
return 2;
|
||
|
|
}
|
||
|
|
return weight_map().at(op.name());
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace gpu
|
||
|
|
} // namespace MIGRAPHX_INLINE_NS
|
||
|
|
} // namespace migraphx
|